US009450979B2

a2 United States Patent

Keromytis et al.

10) Patent No.: US 9,450,979 B2
45) Date of Patent: Sep. 20, 2016

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

METHODS, MEDIA, AND SYSTEMS FOR
DETECTING AN ANOMALOUS SEQUENCE
OF FUNCTION CALLS

Applicants: Angelos D. Keromytis, New York, NY
(US); Salvatore J. Stolfo, Ridgewood,

NI (US)

Inventors: Angelos D. Keromytis, New York, NY
(US); Salvatore J. Stolfo, Ridgewood,

NI (US)

Assignee: The Trustees of Columbia University
in the City of New York, New York,
NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/185,175
Filed: Feb. 20, 2014

Prior Publication Data

US 2014/0173734 Al Jun. 19, 2014

Related U.S. Application Data

Continuation of application No. 13/942,632, filed on
Jul. 15, 2013, now Pat. No. 8,694,833, which is a
continuation of application No. 13/397,670, filed on
Feb. 15, 2012, now Pat. No. 8,489,931, which is a

(Continued)
Int. CL.
GO6F 11/00 (2006.01)
HO4L 29/06 (2006.01)
(Continued)
U.S. CL
CPC ... HO4L 63/1425 (2013.01); GOG6F 11/08

(2013.01); GOGF 11/3688 (2013.01); GO6F
21/566 (2013.01)

(58) Field of Classification Search
CPC ... HO4L 63/1408; HO4L 63/1416; HO4L
63/1425; HO4L 63/1433; GOGF 21/577,
GOG6F 11/3688
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,398,196 A 3/1995 Chambers
5,440,723 A 8/1995 Arnold et al.

(Continued)

FOREIGN PATENT DOCUMENTS

GB 82277151 B 6/1997
Jp 2002368820 A 12/2002
(Continued)

OTHER PUBLICATIONS

Aleph One, “Smashing the Stack for Fun and Profit”, In Phrack, vol.
7, No. 49, Nov. 1996, pp. 1-25.

(Continued)

Primary Examiner — Michael Maskulinski
(74) Attorney, Agent, or Firm — Byrne Poh LLP

(57) ABSTRACT

Methods, media, and systems for detecting an anomalous
sequence of function calls are provided. The methods can
include compressing a sequence of function calls made by
the execution of a program using a compression model; and
determining the presence of an anomalous sequence of
function calls in the sequence of function calls based on the
extent to which the sequence of function calls is compressed.
The methods can further include executing at least one
known program; observing at least one sequence of function
calls made by the execution of the at least one known
program; assigning each type of function call in the at least
one sequence of function calls made by the at least one
known program a unique identifier; and creating at least part
of'the compression model by recording at least one sequence
of unique identifiers.

33 Claims, 9 Drawing Sheets

800

802

being

Detect function call

made

804
call to

Compare function

model

%) Identify

call as anomalous

function

US 9,450,979 B2

(60)

(1)

(56)

Page 2
Related U.S. Application Data 7,877,807 B2 1/2011 Shipp
7,913,306 B2 3/2011 Apap et al.
continuation of application No. 12/447,946, filed as 7,979,907 B2 7/2011 Schultz et al.
application No. PCT/US2007/083003 on Oct. 30, g%g;g Eﬁ 1%85 itolfo elt al.
,108, grawal
2007, now Pat. No. 8,135,994. 8,135,994 B2 3/2012 Keromytis et al.
Provisional application No. 60/856,669, filed on Nov. S’ggé’ggg g% léggg i(z)‘ig:rs et al.
3, 2006, provisional application No. 60/855,704, filed 8:601:322 B2 122013 Stolfo et al.
on Oct. 30, 2006. 2002/0013691 Al 1/2002 Warnes
2002/0026605 Al 2/2002 Terry
Int. CL. 2002/0046275 Al 4/2002 Crosbie et al.
2002/0083343 Al 6/2002 Crosbie et al.
GOGF 11/08 (2006.01) 2002/0095607 Al 7/2002 Lin-Hendel
GO6F 21/56 (2013.01) 2002/0194490 Al 12/2002 Halperin et al.
GO6F 11/36 (2006,0]) 2003/0065926 Al 4/2003 Schultz et al.
2003/0070003 Al 4/2003 Chong et al.
: 2003/0084328 Al 5/2003 Tarquini et al.
References Cited 2003/0149700 Al 82003 Bolt
2003/0159090 Al 8/2003 Wray et al.
U.S. PATENT DOCUMENTS 2003/0200462 Al 10/2003 Munson
2004/0042506 Al 3/2004 Fallon et al.
2’22?’(8)%% i 1%33; gglcsl;zlt’eaflg 2004/0153644 Al 82004 McCorkendale et al.
’ ’ ' 2004/0153823 Al 8/2004 Ansari
5,964,889 A 10/1999 Nachenberg 2004/0205474 Al* 10/2004 Eskin et al.c........ 715/500
5,968,113 A 1071999 Haley et al. 2004/0260947 A1* 12/2004 Brady et al. ..o 713/201
5978917 A 11/1999 Chi 2005/0086333 Al 4/2005 Chefalas et al.
6,067,535 A 52000 Iobson et al. 2005/0086630 Al 4/2005 Chefalas et al.
6,079,031 A 6/2000 Haley et al. 2005/0108562 Al 5/2005 Khazan et al.
6,108,786 A 82000 Knowlson 2005/0198470 Al 9/2005 Kirovski et al.
6,154,876 A~ 11/2000 Haley et al. 2005/0259678 Al 11/2005 Gaur
6,195,024 BL 2/2001 Fallon 2006/0010495 Al 1/2006 Cohen et al.
6,263,348 Bl 7/2001 Kathrow et al. 2006/0053180 Al 3/2006 Alon et al.
6,347,374 Bl 2/2002 Drake et al. 2006/0156380 Al 7/2006 Gladstone et al.
6,357,008 Bl 3/2002 Nachenberg 2006/0168329 Al 7/2006 Tan et al.
6405318 Bl 6/2002 Rowland 2006/0195745 Al 82006 Keromytis et al.
6,681,331 Bl 1/2004 Munson 2006/0264694 Al 11/2006 Viole et al.
6,698,016 Bl 2/2004 Ghizzoni 2006/0265694 Al 112006 Chilimbi et al.
6,718469 B2 4/2004 Pak et al. 2007/0006300 Al 1/2007 Zamir et al.
6,742,124 Bl 5/2004 Kilpatrick et al. 2007/0283338 Al 12/2007 Gupta et al.
6,775,780 BL /2004 Muttik 2008/0016574 Al 1/2008 Tomaselli
6,785,818 Bl 82004 Sobel et al. 2008/0148398 Al* 6/2008 Mezack et al. 726/22
6,839,850 B1 1/2005 Campbell et al. 2009/0013316 Al 1/2009 Martin
g’ggg’%‘g g% lggggg gﬁcsl; et al. 2009/0037682 Al 2/2009 Armstrong et al.
6,970,924 Bl 11/2005 Chu et al.
6,973,577 Bl 12/2005 Kouznetsov FOREIGN PATENT DOCUMENTS
6,983,380 B2 1/2006 Ko
7,065,657 Bl 6/2006 Moran KR 1020010089062 9/2001
7,069,583 B2 6/2006 Yann et al. WO WO 2007/050667 5/2007
7,093,239 Bl 8/2006 van der Made
7,096,215 B2 8/2006 Bates et al. OTHER PUBLICATIONS
;égg’;%; g% 1%%88? g?ﬁ}rgnzst Z{ al. Amarasinghe, S.P., “On the Run—Building Dynamic Program
7:272:855 Bl 9/2007 Yemeni et ;11' Modifiers for Optimization, Introspection, and Security”, In Pro-
7,331,062 B2 2/2008 Alagna et al. ceedings of the Conference on Programming Language Design and
7,334,005 B2 2/2008 Sobel Implementation (PLDI *02), Berlin, DE, Jun. 17-19, 2002, pp. 1-2.
7,340,666 Bl 3/2008 Wright et al. Anderson, D., et al, “Next-Generation Intrusion Detection
7,356,736 B2 4/2008 Natvig Expert System (NIDES): A Summary”, Technical Report, SRI
TSI S Mo e oty 18 0 -
7:409:717 Bl 8/2008 Szor ot alz Apap, F. et al., “Detecting Malicious Software by Monitoring
7412723 B2 8/2008 Blake ot al. Anomalpus Wlndows.Reglstry Accesses”, In Pro.ceedlngs. of the 5th
7,448,084 Bl 11/2008 Apap et al. I_nternatlonal Sympom_um on Recent Advances in Intrusion Detec-
7,461,402 Bl 12/2008 Lyle et al. tion (RAID °02), Zurich, CH, Oct. 16-18, 2002, pp. 36-53.
7,487,544 B2 2/2009 Schultz et al. Armstrong, D. et al., “Controller-Based Autonomic Defense Sys-
7,490,268 B2 2/2009 Keromytis et al. tem”, In Proceedings of the 3rd DARPA Information Survivability
7,496,898 Bl 2/2009 Vu Conference and Exposition (DISCEX ’03), vol. 2, Washington, DC,
7,523,500 Bl 4/2009 Szor et al. US, Apr. 22-24, 2003, pp. 21-23.
7,526,758 B2 4/2009 Hasse et al. Armold, W. and Tesauro, T., “Automatically Generated WIN32
7,603,715 B2 10/2009 Costa et al. Heuristic Virus Detection”. In Virus Bulletin Conference, Orlando,
7,639,714 B2 12/2009 Stolfo_ et al. FL, US, Sep. 28-29, 2000, pp. 51-60.
7,644,441 B2 1/2010 Schmid et al. Asheraft. K. and Eneler. D.. “Usine P, Written C i1
7,647,589 B1 1/2010 Dobrovolskiy et al. sherall, . and Bngler, L., “LSIng trogrammer- WIitten & omprer
7.716.736 B2 5/2010 Radatti et al, Extensions to _Catch Secunt_y Holes”, _In Proceedln,gs of the 2002
7,735,138 B2 6/2010 Zhao IEEE Symposium on Security and Privacy (S&P ’02), Berkeley.
7,748,038 B2 6/2010 Olivier et al. CA, US, May 12-15, 2002, pp. 143-159.
7,818,781 B2 10/2010 Golan et al. Avizienis, A., “The N-Version Approach to Fault-Tolerant Soft-
7,832,012 B2 11/2010 Huddleston ware”, In IEEE Transactions on Software Engineering (TSE °85),
7,836,503 B2 11/2010 Tarquini et al. vol. SE-11, No. 12, Dec. 1985, pp. 1491-1501.

US 9,450,979 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Axelsson, S., “A Preliminary Attempt to Apply Detection and
Estimation Theory to Intrusion Detection”, Technical Report,
Department of Computer Engineering, Chalmers University of
Technology, Mar. 13, 2000, pp. 1-11.

Bace, R.G., “Intrusion Detection”, 1st edition, Macmillan Technical
Publishing, Jan. 2000, pp. 1-322.

Baratloo, A. et al., “Transparent Run-Time Defense Against Stack
Smashing Attacks”, In Proceedings of the 2000 USENIX Annual
Technical Conference (ATEC *00), San Diego, CA, US, Jun. 18-23,
2000, pp. 251-262.

Barbara, D. et al., “An Architecture for Anomaly Detection”, In
Applications of Data Mining in Computer Security, Advances in
Information Security, vol. 6 , May 31, 2002, pp. 63-76.
Barrantes, E.G. et al., “Randomized Instruction Set Emulation to
Disrupt Binary Code Injection Attacks”, In Proceedings of the 10th
ACM Conference on Computer and Communications Security
Conference (CCS ’03), Washington, DC, US, Oct. 27-31, 2003, pp.
281-289.

Bauer, E. et al., “An Empirical Comparison of Voting Classification
Algorithms: Bagging, Boosting, and Variants”, In Machine Learn-
ing, vol. 36, No. 1-2., Jul. 1, 1999, pp. 105-139.

Bell, T. et al., excerpts from “Modeling for Text Compression”, In
ACM Computing Surveys, vol. 21, No. 4, Dec. 1989, pp. 557-591.
Bellovin, S.M., “Distributed Firewalls”, In ;login: Magazine, Nov.
1999, pp. 37-39.

Bhatkar, S et al., “Address Obfuscation: An Efficient Approach to
Combat a Broad Range of Memory Error Exploits”, In Proceedings
of the 12th USENIX Security Symposium (SSYM ’03), Washing-
ton, DC, US, Aug. 4-8, 2003, pp. 105-120.

Bhattacharyya, M. et al., “MET: An Experimental System for
Malicious Email Tracking”. In Proceedings of the 2002 Workshop
on New Security Paradigms (NSPW °02), Virginia Beach, VA, US,
Sep. 23-26, 2002, pp. 3-10.

Bowyer, K. et al., “A Parallel Decision Tree Builder for Mining Very
Large Visualization Datasets”, In Proceedings of the IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, Nashville,
TN, US. Oct. 8-11, 2000, pp. 1888-1893.

Breiman, L., “Bagging Predictors”, In Machine Learning, vol. 24,
No. 2, Aug. 1, 1996, pp. 123-140.

Breiman, L., “Random Forests”, In Machine Learning, vol. 45, No.
1, Oct. 1, 2001, pp. 5-32.

Brilliant, S.S. et al., “Analysis of Faults in an N-Version Software
Experiment”, In IEEE Transactions on Software Engineering; vol.
16, No. 2, Feb. 1990, pp. 238-247.

Bruening, D. et al,, “An Infrastructure for Adaptive Dynamic
Optimization”, In Proceedings of the 1st IEEE/ACM International
Symposium on Code Generation and Optimization (CGO *03), Mar.
23-26, 2003, San Francisco, CA, US, pp. 265-275.

Bulba and Kil3r, “Bypassing StackGuard and StackShield”, In
Phrack Magazine, No. 56, May 1, 2000, pp. 1-8.

Caida, “OCA48 Analysis—Trace Data Stratified by Applications”,
Technical Report, Center for Applied Internet Data Access, test
modified Jul. 18, 2013, pp. 1, available at: http://www.caida.org/
research/traffic-analysis/byapplication/oc48/port__analysis_ app.
xml.

Candea, C. and Fox, A., “Crash-Only Software”, In Proceedings of
the 9th Workshop on Hot Topics in Operating Systems (HotOS-IX),
Lihue (Kauai), HI, US, May 18-21, 2003, pp. 67-72.

Cannady, J. and Harrell, J. “A Comparative Analysis of Current
Intrusion Detection Technologies”, In Proceedings of the Fourth
Conference on Technology for Information Security (TISC °96),
May 1996, pp. 1-17.

Cannady, J.D., excerpts from “An Adaptive Neural Network
Approach to Intrusion Detection and Response”, Nova Southeastern
University, (month unknown) 2000, pp. 19-21.

CERT, “‘Code Red” Worm Exploiting Buffer Overflow in IIS
Indexing Service DLL”, Technical Report, CERT Advisory
CA-2001-19, Jul. 19, 2001, pp. 1-3, available at: http://www.cert.
org/advisories/CA-2001-19.html.

CERT, “Exploitation of Vulnerabilities in Microsoft RPC Inter-
face”, Technical Report, CERT Advisory CA-2003-19, Jul. 31,
2003, pp. 1-3.

CERT, “MS-SQL, Server Worm”, Technical Report, CERT Advi-
sory CA-2003-04, Jan. 27, 2003, pp. 1-3, available at: http://www.
cert.org/advisories/CA-2003-04.html.

CERT, “W32/Blaster Worm”, Technical Report, CERT Advisory
CA-2003-20, Aug. 14, 2003, pp. 1-3, available at: http://www.cert.
org/advisories/CA-2003-20.html.

Chan, PK. et al., “A Machine Learning Approach to Anomaly
Detection”, Technical Report CS-2003-06, Florida Institute of Tech-
nology, Mar. 29, 2003, pp. 1-13.

Chaturvedi, A. et al., “Improving Attack Detection in Host-Based
IDS by Learning Properties of System Call Arguments”, In Pro-
ceedings of the IEEE Symposium on Security and Privacy, Oakland,
CA, US, May 8-11, 2005, pp. 1-19.

Chebrolu, S., excerpts from “Feature Deduction and Ensemble
Design of Intrusion Detection Systems”, In Computers & Security,
vol. 24, Jun. 2005, pp. 295-307.

Chen, H. and Wagner, D., “MOPS: An Infrastructure for Examining
Security Properties of Software”. In Proceedings of the 9th ACM
Conference on Computer and Communications Security (CCS 02),
Washington, DC, US, Nov. 18-22, 2002, pp. 235-244.

Chen, PM. and Noble, B.D., “When Virtual is Better Than Real”,
In Proceedings of the 8th Workshop on Hot Topics in Operating
System (HotOS *01), Elmau/Oberbayern, DE, May 20-23, 2001, pp.
133-138.

Chess, B.V., “Improving Computer Security Using Extended Static
Checking”, In Proceedings of the IEEE Symposium on Security and
Privacy (S&P ’02), Berkeley, CA, US, May 12-15, 2002, pp.
160-173.

Chew, M. and Song, D., “Mitigating Buffer Overflows by Operating
System Randomization”, Technical Report CMU-CS-02-197,
Carnegie Mellon University, Dec. 2002, pp. 1-11.

Cho, S.B. and Han, S-J., “Two Sophisticated Techniques to Improve
HMM-Based Intrusion Detection Systems”, In Proceedings of the
Sixth International Symposium on Recent Advances in Intrusion
Detection (RAID °03), Pittsburgh, PA, US, Sep. 8-10, 2003, pp.
207-219.

Christodorescu, M. and Jha. S., “Static Analysis of Executables to
Detect Malicious Patterns”, In Proceedings of the 12th USENIX
Security Symposium (SSYM ’03), Washington, DC, US, Aug. 4-8,
2003, pp. 169-186.

Cisco Systems, Inc., “Using Network-Based Application Recogni-
tion and Access Control Lists for Blocking the ‘Code Red’ Worm at
Network Ingress Points”, Technical Report No. 27842, Aug. 2,
2006, pp. 1-8.

Cohen, F., “Computer Viruses: Theory and Experiments”, In Com-
puters & Security, vol. 6, No. 1, Feb. 1987, pp. 22-35.

Computer Economics. “Malicious Code Attacks Had $13.2 Billion
Economic Impact in 20017, In Computer Economics, Sep. 2002, pp.
1, available at: http://www.computereconomics.com/cei/preess/
pr92191.html.

Conover, M., “w00w00 on Heap Overflows”, Technical Report, Jan.
1999, pp. 1-17, available at: http://www.w00w00.org/articles.html.
Cowan, C. et al., “FormatGuard: Automatic Protection From printf
Format String Vulnerabilites”, In Proceedings of the 10th USENIX
Security Symposium (SSYM ’01), Washington, DC, US, Aug.
13-17, 2001, pp. 191-199.

Cowan, C. et al., “PointGuard: Protecting Pointers From Buffer
Overflow Vulnerabilities”, In Proceedings of the 12th USENIX
Security Symposium (SSYM ’03), Washington, DC, US, Aug. 4-8,
2003, pp. 91-104.

Cowan, C. et al., “Stackguard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks”, In Proceedings of the 7th
USENIX Security Symposium (SSYM ’98), San Antonio, TX, US,
Jan. 26-29, 1998, pp. 63-78.

Cowan, C. et al., “SubDomain: Parsimonious Server Security”, In
Proceedings of the 14th USENIX System Administration Confer-
ence (LISA ’00), New Orleans, LA, US, Dec. 3-8, 2000, pp.
341-354.

US 9,450,979 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Crosby, S.A. and Wallach, D.S., “Denial of Service via Algorithmic
Complexity Attacks”, In Proceedings of the 12th USENIX Security
Symposium (SSYM ’03), Washington, DC, US, Aug. 4-8, 2003, pp.
29-44.

Cult Dead Cow, “Back Orifice”, last accessed Jul. 2, 2013, pp. 1-2,
available at: http://www.cuttdeadcow.com/tools/bo.html.
Damashek, M., “Gauging Similarity with N-Grams: Language-
Independent Categorization of Text”, In Science, vol. 267, No.
5199, Feb. 10, 1995, pp. 843-848.

Dark-E, “AIM Recovery”, last accessed Jul. 2, 2013, pp. 1, avail-
able at: http://www.dark-e.com/des/software/aim/index.shtml.
Debray, S. and Evans, W., “Profile-Guided Code Compression”, In
Proceedings of the 2002 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’02), Berlin,
DE, Jun. 17-19, 2002, pp. 95-105.

Demsky, B. and Rinard, M.C., “Automatic Data Structure Repair
for Self-Healing System”, In Proceedings of the 1st Workshop on
Algorithms and Architectures for Self-Managing Systems, San
Diego, CA, US, Jun. 11, 2003, pp. 1-6.

Demsky, B. and Rinard, M.C., “Automatic Detection and Repair of
Errors in Data Structures”, In Proceedings of the 18th Annual ACM
SIGPLAN Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’03), Anaheim, CA, US,
Oct. 26-30, 2003, pp. 78-95.

Denning, D.E., “An intrusion Detection Model”, In IEEE Transac-
tions on Software Engineering, vol. SE-13, No. 2, Feb. 1987, pp.
222-232.

Diamond CS, “Diamond Computer System Products—DiamondCS
RegistryProt”, Jan. 23, 2001, pp. 1-2, available at: https://web.
archive.org/web/20010123222600/http://www.diamondcs.com.au/
html/registryprot.htm.

Didaci, L. et al., “Ensemble Learning for Intrusion Detection in
Computer Networks”, In Proceedings of the 8th Conference of the
Ttalian Association of Artificial Intelligence (AIAA), Siena, IT, Sep.
2002, pp. 1-10.

Dierks, T. and Allen, C., “The TLS Protocol Version 1.0”, Technical
Report, Internet Engineering Task Force: RFC 2246, Jan. 1999, pp.
1-69, available at http://www.ietf.org/rfc/rfc2246 txt.

Dietterich, T., “Ensemble Methods in Machine Learning”, In Lec-
ture Notes in Computer Science, vol. 1857, Dec. 2000, pp. 1-15.
Dietterich, T.G., “An Experimental Comparison of Three Methods
for Constructing Ensembles of Decision Trees: Bagging, Boosting,
and Randomization”, In Machine Learning, vol. 40, No. 2, Aug.
1999, pp. 1-22.

Dolan-Gavitt, B., “Forensic Analysis of the Windows Registry in
Memory”, In Digital Investigation, vol. 5, Aug. 2009, pp. 526-532.
Du, W., “Security Relevancy Analysis on the Registry of Windows
NT 4.0”, In Proceedings of the 15th Annual Computer Security
Applications Conference (ACSAC ’99), Phoenix, AZ, US, Dec.
6-10, 1999, pp. 331-338.

DuMouchel, W., “Computer Intrusion Detection Based on Bayes
Factors for Comparing Command Transition Probabilities”, Tech-
nical Report TR91, National Institute of Statistical Sciences, Feb.
1999, pp. 1-14.

Dunlap, G.W. et al., “ReVirt: Enabling Intrusion Analysis Through
Virtual-Machine Logging and Replay”, In Proceedings of the Fifth
Symposium on Operating Systems Design and Implementation
(OSDI °02), Boston, MA, US, Dec. 9-11, 2002, pp. 211-224.
Endler, D., “Intrusion Detection Applying Machine Learning to
Solaris Audit Data”, In Proceedings of the 14th Annual Computer
Security Applications Conference, Phoenix, AZ, US, Dec. 7-11,
1998, pp. 268-279.

Endler, D., “Intrusion Detection Using Solaris” Basic Security
Module” last updated Nov. 3, 2010, pp. 1-8, available at: http://
www.symantec.com/connect/articles/intrusion-detection-using-
solaris-basic-security-module.

Engler, D. and Ashcroft, K., “RacerX: Effective, Static Detection of
Race Conditions and Deadlocks”, In Proceedings of the ACM

Symposium on Operating Systems Principles (SOSP ’03), Balton
Landing, NY, US, Oct. 19-22, 2003, pp. 237-252.

Eskin, E., “Adaptive Model Generation for Intrusion Detection
Systems”, In the Workshop on Intrusion Detection Systems
(“WIDS”), 7th ACM Conference on Computer and Communica-
tions Security, Athens, GR, Nov. 1, 2000, pp. 1-14.

Eskin, E., “Anomaly Detection Over Noisy Data Using Learned
Probability Distributions”, In Proceedings of the 17th Internationai
Conference on Machine Learning (ICML *00), Stanford, CA, US,
Jun. 29-Jul. 2, 2000, pp. 255-262.

Etoh, J., “GCC Extension for Protecting Applications From Stack-
Smashing Attacks”, Technical Report, IBM Research, Aug. 22,
2005, pp. 1-3, available at: http:/tri.ibm.com/projects/security/ssp.
Fan, W. and Stolfo, S.J., “Ensemble-based Adaptive Intrusion
Detection”, In Proceedings of the Second SIAM International
Conference on Data Mining, Arlington, VA, US, Apr. 11-13, 2002,
pp. 41-56.

Fan, W. et al., “Using Artificial Anomalies to Detect Unknown and
Known Network Intrusions”, In Proceedings of IEEE International
Conference on Data Mining (ICDM °01), San Jose, CA, US, Nov.
29-Dec. 2, 2001, pp. 123-130.

Fan, W., “Systematic Data Selection to Mine Concept-Drifting Data
Streams”, In Proceedings at the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Seatle, WA,
US, Aug. 22-25, 2004, pp. 126-137.

Feng, H. et al., “Anomaly Detection Using Call Stack Information”,
In Proceedings of the 2003 IEEE Symposium on Security and
Privacy, Berkeley, CA, US, May 11-14, 2003, pp. 62-75.

Flack, C. and Atallan, M.J., “A Toolkit for Modeling and Com-
pressing Audit Data”, Technical Report, Purdue University, Mar. 10,
1999, pp. 1-25.

Ford, R., “The Future of Virus Detection”, Information Security
Technical Report, vol. 9, No. 2, Apr.-Jun. 2004, pp. 19-26.
Forrest, S. et al., “A Sense of Self for Unix Processes”, In Proceed-
ings of the IEEE Symposium on Security and Privacy, Oakland, CA,
US, May 6-8, 1996, pp. 120-128.

Forrest, S. et al., “Building Diverse Computer Systems”, In Pro-
ceedings of the 6th Workshop on Hot Topics in Operating Systems
(HotOS °97), Cape Cod, MA, US, May 5-6, 1997, pp. 67-72.
Frantzen, M. and Shuey, M., “StackGhost: Hardware Facilitated
Stack Protection”, In Proceedings of the 10th USENIX Security
Symposium (SSYM °01), Washington, DC, US, Aug. 13-17, 2001,
pp. 55-66.

Friedman, N. and Singer, Y., “Efficient Bayesian Parameter Esti-
mation in Large Discrete Domains”, In Proceedings of the 11th
Conference on Advances in Neural Information Processing Systems
(NIPS °98), Denver, CO, US, Nov. 30-Dec. 5, 1998, pp. 417-423.
Garfinkel, T. and Rosenblum, M., “A Virtual Machine Introspection
Based Architecture for Intrusion Detection”, In Proceedings of the
10th Network and Distributed System Security Symposium (NDSS
’03), San Diego, CA, US, Feb. 6-7, 2003, pp. 191-206.

Garfinkel, T., “Traps and Pitfalls: Practical Problems in System Call
Interposition Based Security Tools”, In Proceedings of the Network
and Distributed Systems Security Symposium (NDSS ’03), San
Diego, CA, US, Feb. 6-7, 2003, pp. 163-176.

Geer, Jr.,, D.E., “Monopoly Considered Harmful”, In IEEE Security
& Privacy, vol. 1, No. 6, Nov./Dec. 2003, pp. 14-17.

Ghosh, AK. and Schwartzbard, A., “A Study in Using Neural
Networks for Anomaly and Misuse Detection”, In Proceedings of
the 8th USENIX Security Symposium, Washington, DC, US, Aug.
28-26, 1999, pp. 1-12.

Ghosti, A K. et al. “Learning Program Behavior Profiles for Intru-
sion Detection”, In Proceedings of the Workshop on Intrusion
Detection and Network Monitoring, Santa Clara, CA, US, Apr.
9-12, 1999, pp. 51-62.

Ghosh, A K. et al., “Using Program Behavior Profiles for Intrusion
Detection”, In Proceedings of the SANS Third Conference and
Workshop on Intrusion Detection and Response, Mar. 1999, pp. 1-7.
Goldberg, 1. et al., “A Secure Environment for Untrusted Helper
Applications (Confining the Wily Hacker)”, In Proceedings of the
6th USENIX Security Symposium (SSYM °96), San Jose, CA, US,
Jul. 22-25, 1996, pp. 1-14.

US 9,450,979 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Goth, G., “Addressing the Monoculture”, In IEEE Security &
Privacy, vol. 99, No. 6, Nov./Dec. 2003, pp. 8-10.

Greyware, “Grr! Greyware Registry Rearguard”, Aug. 17,2000, pp.
1-7, available at: https://web.archive.org/web/20000817031817/
http://www.greyware.com/software/grr/.

Grimes, R. A., “Malicious Mobile Code: Virus Protection for
Windows”, Lst Edition, Aug. 2001, pp. 45-46.

Hall, L.O. et al., “Comparing Pure Parallel Ensemble Creation
Techniques Against Bagging”, In Proceedings of the Third IEEE
International Conference on Data Mining (ICDM °03), Melbourne,
FL, US, Nov. 19-22, 2003, pp. 533-536.

Hangal, S. and Lam, M.S., “Tracking Down Software Bugs Using
Automatic Anomaly Detection”, In Proceedings of the 24th Inter-
national Conference on Software Engineering (ICSE *02), Orlando,
FL, US, May 19-25, 2002, pp. 291-301.

Hedbom, H. et al., “A Security Evaluation of a Non-Distributed
Version of Windows NT”, In Proceedings of the Second Nordic
Workshop on Secure Computer Systems (NORDSEC 97, Espoo,
FI, Nov. 6-7, 1997, pp. 1-29.

Hennessy, J.L. and Patterson, D.A., “Computer Organization and
Design: The Hardware/Software Interface,” 2nd Edition, Aug. 1997,
pp. 1-122.

Hoagland, J. and Standard, S., “SPADE: Silicon Defense”, last
accessed Jun. 2013, pp. 1-4, available at: http://www.silicondefense.
com/software/spice.

Hochberg, J.G. et al.,“NADIR: A Prototype System for Detecting
Network and File System Abuse”, Technical Report, Los Alamos
National Laboratory, Nov. 1992, pp. 1-22.

Hofmeyr, S.A. et al., “Intrusion Detection System Using Sequences
of System Calls”, In Journal of Computer Security, vol. 6, No. 3,
Aug. 18, 1998, pp. 151-180.

Hoglund, G.W. et al., excerpts from “The ‘ESSENCE’ of Intrusion
Detection: A Knowledge Based Approach to Security Monitoring
and Control”, In Procedings of the 7th International Conference in
Industrial & Engineering Applications of Artificial Intelligence and
Expert Systems, Austin, TX, US, May 31-Jun. 3, 1994, pp. 201-209.
Hollander, V., “The Future of Web Server Security: Why Your Web
Site is Still Vulnerable to Attack”, Technical Report, (month
unknown) 2001, pp. 1-9.

Holmes, L., “Windows PowerShell Cookbook™, 2nd edition,
O’Reilly Media, Aug. 2010, pp. 1-4.

Honig, A. et al., “Adaptive Model Generation: An Architecture for
the Deployment of Data Mining-Based Intrusion Detection Sys-
tems”, In Applications of Data Mining in Computer Security, May
2002, pp. 153-194.

TIlgun, K., excerpts from “USTAT: A Real-Time intrusion Detection
System for UNIX”, In Proceedings of the 1993 IEEE Computer
Society Symposium on Research in Security and Privacy, Oakland,
CA, US, May 24-26, 1993, pp. 16-28.

Inoue, H. and Forrest, S., “Anomaly Intrusion Detection in Dynamic
Execution Environments”, In New Security Paradigms Workshop,
Virginia Beach, VA, US, Sep. 23-26, 2002, pp. 52-60.

Inoue, H. and Forrest, S., “Generic Application Intrusion Detec-
tion”, Technical Report, University of New Mexico, Mar. 26, 2002,
pp. 1-14.

International Patent Application No. PCT/US2006/041591, filed
Oct. 25, 2006.

International Patent Application No. PCT/US2007/083003, filed
Nov. 30, 2007.

International Preliminary Report on Patentability dated Apr. 2, 2009
in International Patent Application No. PCT/US2006/041591.
International Preliminary Report on Patentability dated May 14,
2009 in International Patent Application No. PCT/US2007/083003.
International Search Report dated Jun. 12, 2006 in International
Patent Application No. PCT/US2007/083003.

International Search Report dated Jun. 25, 2008 in International
Patent Application No. PCT/US2006/041591.

Internet Engineering Task Force, “Intrusion Detection Exchange
Format”, Oct. 15, 2010, pp. 1-2, available at: http://datatracker.ietf.
org/wg/idwg/charter/.

Intrusion Inc. Product Website, Feb. 14, 2001, pp. 1, available at:
https://Web.archive.org/web/20010214040305/http://www.intru-
sion.com/Products/enterprise.shtml.

Ioannidis, J. and Bellovin, SM., “Implementing Push-Back:
Router-Based Defense Against DDoS Attacks”, In Proceedings of
the 9th Annual Symposium on Network and Distributed System
Security (NDSS ’02), San Diego, CA, US, Feb. 2002, pp. 1-8.
Ioannidis, S. et al., “Implementing a Distributed Firewall”, In
Proceedings of the 7th ACM Conference on Computer and Com-
munications Security (CCS ’00), Athens, GR, Nov. 1-4, 2000, pp.
190-199.

Islam, M.M., “A Constructive Algorithm for Training Cooperative
Neural Network Ensembles”, In IEEE Transactions on Neural
Networks, vol. 14, No. 4, Jul. 2003, pp. 820-634.

Janakiraman, R. et al., “Indra: A Peer-to-Peer Approach to Network
Intrusion Detection and Prevention”, In Proceedings of the 12th
IEEE International Workshops on Enabling Technologies: Infra-
structure for Collaborative Enterprises (WETICE ’03), Linz, AT,
Jun. 9-11, 2003, pp. 226-231.

Javitz, H.S. and Valdes, A., “The Nides Statistical Component:
Description and Justification”, Technical Report 3131, SRI Inter-
national, Computer Science Laboratory, Mar. 7, 1994, pp. 1-47.
Jim, T. et al., “Cyclone: A Safe Dialect of C”, In Proceedings of the
USENIX Annual Technical Conference (ATEC *02), Monterey, CA,
US, Jun. 10-15, 2002, pp. 275-288.

Jones, R.-W.M. and Kelly, PH.J., “Backwards-Compatible Bounds
Checking for Arrays and Pointers in C Programs”, In Proceedings
of the Third International Workshop on Automated Debugging
(AADEBUG °97), Linkdping, SE, May 26-28, 1997, pp. 13-26.
Just, J.E. et al.,“Learning Unknown Attacks—A Start”, In Proceed-
ings of the Sth International Symposium on Recent Advances in
Intrusion Detection (RAID *02), Zurich, CH, Oct. 16-18, 2002, pp.
158-176.

Kane Secure Enterprise, excerpts from “Detecting Administrator
and Super User Misuse (Kane I)” (month unknown) 2000, pp. 1.
Kane Secure Enterprise, excerpts from “Detecting Stolen Passwords
(Kane II)”, (month unknown) 2000, pp. 1.

Kane Security Analyst, excerpts from “Kane Security Analyst
Features & Benefits (Kane III)”, (month unknown) 2000, pp. 2-3.
Kane, excerpts from “Advancing the Art of Intrusion Detection: The
KSE Behavioral Profiling System (Kane IV)”, (month unknown)
2000, pp. 2-5.

Ko, G.S. et al., “Countering Code-Injection Attacks With Instruc-
tion-Set Randomization”, In Proceedings of the ACM Computer
and Communications Security (CCS ’03) Conference, Washington,
DC, US, Oct. 27-30, 2003, pp. 272-280.

Kean, E.S., “COSAK Code Security Analysis Kit”, Technical
Report AFRL-IF-RS-TR-2004-19, Drexel University, Jan. 2004, pp.
1-17.

Kent, S. and Atkinson, R., “Security Architecture for the Internet
Protocol”, Technical Report, RFC 2401, Nov. 1996, pp. 1-80.
Kephart, J.O. et al., “A Biologically Inspired Immune System for
Computers”, In Artificial Life IV: Proceedings of the 4th Interna-
tional Workshop on the Synthesis and Simulation of Living Sys-
tems, Cambridge, MA, US, Jul. 6-8, 1994. pp. 130-139.

Kim, G.H. and Spafford, E.H., “Experiences with Tripwire: Using
Integrity Checkers for Intrusion Detection”, Purdue Technical
Report, Feb. 1994, pp. 1-15.

Kim, G.H. and Spafford, E.H., “The Design and Implementation of
Tripwire: A File System Integrity Checker”, Purdue Technical
Report, Nov. 1993, pp. 1-23.

Kim, G.H. and Spofford, E.H., “Witting, Supporting, and Evaluat-
ing Tripwire: A Publically Available Security Tool”, Purdue Tech-
nical Report, Mar. 1994. pp. 1-25.

King, S.T. and Chen, P.M., “Backtracking Intrusions”, In Proceed-
ings of the 19th ACM Symposium on Operating Systems Principles
2003 (SOSP ’03), Bolton Landing, NY, US, Oct. 19-22, 2003, pp.
223-236.

US 9,450,979 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

King, S.T. et al., “Operating System Support for Virtual Machines”,
In Proceedings of the USENIX Annual Technical Conference
(ATEC °03), San Antonio, TX, US, Jun. 9-14, 2003, pp. 71-84.
Kiriansky, V. et al., “Secure Execution Via Program Shepherding”,
In Proceedings of the 11th USENIX Security Symposium (SSYM
’02), San Francisco, CA, US, Aug. 5-9, 2002, pp. 191-205.
Klinkenberg, R., “Detecting Concept Drift with Support Vector
Machines”, In Proceedings of the Seventeenth International Con-
ference on Machine Learning, Stanford, CA, US, Jun. 29-Jul. 2,
2000, pp. 1-8.

Kodialam, M. and Lakshman, T.V., “Detecting Network Intrusions
via Sampling: A Game Theoretic Approach”, In Proceedings of the
22nd Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM °03), San Franciso, CA, US,
Mar. 30-Apr. 3, 2003, pp. 1-10.

Kolter, J.Z. and Maloof, M., “Dynamic Weighted Majority: A New
Ensemble Method for Tracking Concept Drift”, In Proceedings of
the Third International IEEE Conference on Data Mining, Mel-
bourne, FL, US, Nov. 22, 2003, pp. 2-3.

Kolter, J.Z. and Maloof, M., “Learning to Detect Malicious
Executables in the Wild”, In Proceedings of the 10th International
Conference on Knowledge Discovery and Data Mining (KDD *04),
Seattle, WA, US, Aug. 22-25, 2004, pp. 470-480.

Korba, J., “Windows NT Attacks for the Evaluation of Intrusion
Detection Systems”, Thesis, Massachusetts Institute of Technology,
Jun. 2000, pp. 1-102.

Kremer, H.S., excerpts from “Real-Time Intrusion Detection for
Windows NT Based on Navy IT-21 Audit Policy”, Thesis, Naval
Post Graduate School, Monterey, CA, US, Sep. 1999, pp. 1-61.
Krugel, C. et al., “Service Specific Anomaly Detection for Network
Intrusion Detection”, In Proceedings of the 2002 ACM Symposium
on Applied Computing (SAC ’02), Madrid, ES, Mar. 10-14, 2002,
pp. 201-208.

Lane, T. and Bradley, C.E., “Approaches to Online Learning and
Concept Drift for User Identification in Computer Security”. In
AAAI Technical Report WS-98-07, Jul. 1998, pp. 1-5.

Lane, T. and Bradley, C.E., “Temporal Sequence Learning and Data
Reduction for Anomaly Detection”, In ACM Transactions on Infor-
mation and System Security, vol. 2, No. 3, Aug. 1999, pp. 295-331.
LaPadula, L.J., “State of the Art in Anomaly Detection and Reac-
tion”, Technical Paper, The MITRE Corporation, Jul. 1999, pp.
1-37.

Larochelle, D. and Evans, D., “Statically Detecting Likely Buffer
Overflow Vulnerabilities”, In Proceedings of the 10th USENIX
Security Symposium (SSYM ’01), Washington, DC, US, Aug.
13-17, 2001, pp. 177-190.

Larson, E. and Austin, T., “High Coverage Detection of Input-
Related Security Faults”, In Proceedings of the 12th Conference on
USENIX Security Symposium (SSYM °03), vol. 12, Aug. 2003, pp.
121-136.

Laureano, M. et al., “Intrusion Detection in Virtual Machine Envi-
ronments”, In Proceedings of the 30th Euromicro Conference,
Rennes, FR, Aug. 31-Sep. 4, 2004, pp. 1-6.

Lee, J.S. et al., “A Generic Virus Detection Agent on the Internet”,
In Proceedings of the 30th Annual Hawaii International Conference
on System Sciences (HICSS ’97), Wailea, HI, US, Jan. 7-10, 1997,
pp. 210-219.

Lee, W. and Stolfo, S.J., “A Framework for Constructing Features
and Models for Intrusion Detection Systems”, In ACM Transactions
on Information and System Security, vol. 3, No. 4, Nov. 2000, pp.
227-291.

Lee, W. and Stolfo, S.J., “Data Mining Approaches for Intrusion
Detection”, In Proceedings of the 7th Conference on USENIX
Security Symposium (SSYM °98), San Antonio, TX, US, Jan.
26-29, 1998, pp. 1-16.

Lee, W. et al., “A Data Mining Framework for Building Intrusion
Detection Models”, In Proceedings of the 1999 IEEE Symposium
on Security and Privacy (S&P ’99), Oakland, CA, US, May 9-12,
1999, pp. 120-132.

Lee, W. et al., “Learning Patterns from Unix Process Execution
Traces for Intrusion Detection”, In Proceedings of the AAAI Work-
shop: Al Approaches to Fraud Detection, Providence, RI, US, Jul.
27, 1997, pp. 50-56.

Lee, W. et al., “Mining in a Data-Flow Environment: Experience in
Network Intrusion Detection”, In Proceedings of the Fifth ACM
SIGKKD International Conference on Knowledge Discovery and
Data Mining, San Diego, CA, US, Aug. 15-18, 1999, pp. 114-124.
Lee, W. et al., excerpts from “A Data Mining Approach for Building
Cost-Sensitive and Light Intrusion Detection Models”, In DARPA
Quarterly Review, Nov. 2000, pp. 38-52.

Lee, W., “A Data Mining Framework for Constructing Features and
Models for Intrusion Detection Systems”, PhD Thesis, Columbia
University, Jun. 1999, pp. 1-177.

Lee, W., “Real Time Data Mining-based Intrusion Detection”: In
DARPA Information Survivability Conference and Exposition II
(DISCEX °01), Anaheim, CA, US, Jun. 12-14, 2001, pp. 89-100.
Lhee, K. and Chapin, S.J., “Type-Assisted Dynamic Buffer Over-
flow Detection”, In Proceedings of the 1l1th USENIX Security
Symposium (SSYM °02), San Francisco, CA, US, Aug. 5-9, 2002,
pp. 61-90.

Liang, Z., “Isolated Program Execution: An Application Transpar-
ent Approach for Executing Untrusted Programs”, In Proceedings of
the 19th Annual Computer Security Applications Conference, Las
Vegas, NV, US, Dec. 6-12, 2003, pp. 182-191.

Lin, M.J. et al., “A New Model for Availability in the Face of
Self-Propagating Attacks”, In Proceedings of the 1998 Workshop on
New Security Paradigms (NSPW °98), Charlottesville, VA, US,
Sep. 22-26, 1999, pp. 134-137.

Lippmann, R. et al., “The 1999 DARPA Off-Line Intrusion Detec-
tion Evaluation”, In Computer Networks. vol. 34, No. 4, Oct. 2000,
pp. 579-595.

Liston, T., “Welcome to My Taipit: The Tactical and Strategic Use
of LaBrea”, Polytechnic, Feb. 17, 2003, pp. 1-4, available at:
http://download.polytechnic.edu.na/pub4/download.sourceforge.
net/pub/sourceforge/l/la/labrea/OldFiles/LaBrea-Tom-Liston-
Whitepaper-Welcome-to-my-tarpit.txt.

Locasto, M.E. et al, “Application Communities: Using
Monoculture for Dependability”, In Proceedings of the 1st Work-
shop on Hot Topics in System Dependability (HotDep *05), Yoko-
hama, JP, Jun. 30, 2005, pp. 1-5.

Mahoney, M.V. and Chan, PX., “An Analysis of the 1999 DARPA/
Lincoln Laboratory Evaluation Data for Network Anomaly Detec-
tion”, In Proceedings of the 6th International Symposium Recent
Advances in Intrusion Detection (RAID ’03), Pittsburgh, PA, US,
Sep. 8-10, 2003, pp. 220-237.

Mahoney, M.V. and Chan, PK., “Detecting Novel Attacks by
identifying Anomalous Network Packet Headers”, Technical Report
CS-2001-2, Florida Institute of Technology, Oct. 2001, pp. 1-10.
Mahoney, M. V. et al., “Learning Nonstationary Models of Normal
Network Traffic for Detecting Novel Attacks”, In Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (SIGKDD ’02), Edmonton, Alberta,
CA, Jul. 23-26, 2002, pp. 376-365.

Mahoney, M.V., “Network Traffic Anomaly Detection Based on
Packet Bytes”, In Proceedings of the 2003 ACM Symposium on
Applied Computing (SAC °03), Melbourne, FL, US, Mar. 9-12,
2003, pp. 346-350.

Malton, A., “The Denotational Semantics of a Functional Tree-
Manipulation Language”, In Computer Languages, vol. 19, No. 3,
Jul. 1993, pp. 157-168.

Microsoft Corporation, “Microsoft Portable Executable and Com-
mon Object File Format Specification”, Technical Report, Revision
6.0, Feb. 1999, pp. 1-77.

Microsoft, “Structure of the Registry”, last accessed Jan. 29, 2016,
pp. 1-2, available at: http://msdn.microsoft.com/enus/library/win-
dows/desktop/ms724946(v=vs.85).aspx.

Miller, T.C. and De Raadt, T., “Stricpy and Strical-Consistent, Safe,
String Copy and Concatenation”, In Proceedings of the FREENIX
Track: 1999 USENIX Annual Technical Conference, Monterey, CA,
US, Jun. 6-11, 1999, pp. 131-144.

US 9,450,979 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

Moore, D. et al., “Code-Red: A Case Study on the Spread and
Victims of an Internet Worm”, In Proceedings of the 2nd Internet
Measurement Workshop (IMW °02), Marseille, FR, Nov. 6-8, 2002,
pp. 273-284.

Moore, D. et al., “Internet Quarantine: Requirements for Containing
Self-Propagating Code”, In IEEE Societies Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications, vol.
3, Mar. 30-Apr. 3, 2003. pp. 1901-1910.

Moore, D., “The Spread of the Sapphire/Slammer Worm”, Techni-
cal Report, Apr. 3, 2003, pp. 1-7, available at: http://www.
silicondefense.com/research/worms/slammer.php.

Mosberger, D. and Jin, T., “httperf—A Tool for Measuring Web
Server Performance”, In ACM Sigmetrics Performance Evaluation
Review, vol. 26, No. 3, Dec. 1998, pp. 31-37.

Mukkamala, S., excerpts from “Intrusion Detection using an
Ensemble of Intelligent Paradigms”, In the Journal of Network and
Computer Applications, vol. 26, No. 2, Apr. 2005, pp. 167-182.
Murray, J.D., “Windows NT Event Logging, Chapter 4: Windows
NT Security Auditing”, 1st Edition. O’Reilly Media, Sep. 1996, pp.
64-97.

Nachenberg, C., “Computer Virus—Coevolution”, In Communica-
tions of the ACM, vol. 40, No. 1, Jan. 1997, pp. 46-51.
Nachenberg, C.,“Behavior Blocking: The Next Step in Anti-Virus
Protection”, Symantec, Mar. 2002, pp. 1-5, available at: http://www.
symantec.com/connect/articles. behavior-blocking-next-step-anti-
virus-protection.

Nethercote, N., and Seward, J., “Valgrind: A Program Supervision
Framework”, In Electronic Notes in Theoretical Computer Science,
vol. 89, No. 2, Oct. 2003, pp. 44-66.

Newsome, J. and Song, D., “Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Com-
modity Software”, In Proceedings at the 12th Annual Network and
Distributed System Security Symposium (NDSS ’05), San Diego,
CA, US, Feb. 3-4, 2005, pp. 1-17.

Nojiri, D. et al., “Cooperative Response Strategies for Large Scale
Attack Mitigation”, In Proceedings of the 3rd DARPA Information
Survivability Conference and Exposition (DISCEX-III *03), vol. 1,
Washington, DC, US, Apr. 22-24, 2003, pp. 293-302.

Notice of Allowance mailed Nov. 1, 2011 in U.S. Appl. No.
12/447,946.

NT Security, “Trojan/XTCP”, Panda Software’s Center for Virus
Control, Jun. 22, 2002, pp. 1-3, available at: http://www.ntsecurity.
netPanda/Index.cfm?FuseAction=Virus& VirusID=659.

NW Internet, “Setup Trojan”, last updated Mar. 6, 2005, pp. 1,
available at: http://www.nwinternet.com/~pchelp/bo/setuptrojan.
txt.

Office Action dated Mar. 3, 2011 in U.S. Appl. No. 12/447,946.
Office Action dated Jun. 10, 2015 in U.S. Appl. No. 14/014,871.
Office Action dated Aug. 14, 2012 in U.S. Appl. No. 13/397,670.
Office Action dated Aug. 23, 2010 in U.S. Appl. No. 12/091,150.
Office Action dated Sep. 7, 2012 in U.S. Appl. No. 13/301,741.
Office Action dated Sep. 29, 2014 in U.S. Appl. No. 14/014,671.
Oplinger, J. and Lam, M.S., “Enhancing Software Reliability with
Speculative Threads”, In Proceedings of the 10th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-X ’02), San Jose, CA, US, Oct.
5-9, 2002, pp. 184-196.

Paxson, V., “Bro: A System for Detecting Network intruders in
Real-Time”, In Proceedings of the 7th USENIX Security Sympo-
sium, San Antonio, TX, US, Jan. 26-29, 1998, pp. 1-16.
Peterson, D.S. et al., “A Flexible Containment Mechanism for
Executing Untrusted Code”, In Proceedings of the 11th USENIX
Security Symposium (SSYM ’02), San Francisco, CA, US, Aug.
5-9, 2002, pp. 207-225.

Porras, PA. and Neumann, PG., “EMERALD: Event Monitoring
Enabling Responses to Anomalous Live Disturbances”, In Proceed-
ings of the 20th National Information Systems Security Conference
(NISSC °97), Baltimore, MD, US, Oct. 7-10, 1997, pp. 353-365.

Prasad, M. and Chiueh, T., “A Binary Rewriting Defense Against
Stack Based Buffer Overflow Attacks”, In Proceedings of the
USENIX Annual Technical Conference (ATEC ’03), Boston, MA,
US, Jun. 9-14, 2003, pp. 211-224.

Prevelakis, V. and Spinellis, D., “Sandboxing Applications”, In
Proceedings of the USENIX Annual Technical Conference ATEC
’01, Boston: MA, US, Jun. 25-30, 2001, pp. 119-126.

Prevelakis, V., “A Secure Station for Network Monitoring and
Control”, In Proceedings of the 8th USENIX Security Symposium,
Washington, DC, US, Aug. 23-26, 1999, pp. 1-8.

Provos, N. et al., “Preventing Privilege Escalation”, In Proceedings
of the 12th conference on USENIX Security Symposium
(SSYM’03), Washington, DC, US, Aug. 4-8, 2003, pp. 1-11.
Provos, N., “Improving Host Security with System Call Policies”,
In Proceedings of the 12th USENIX Security Symposium (SSYM
’03), Washington, DC, US, Aug. 4-8, 2003, pp. 257-272.
Quinlan, J.R., “Bagging: Boosting and C4.5”, In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, Portland,
OR, US, Aug. 4-8, 1996, pp. 725-730.

Ramakrishnan, C.R., “Model-Based Vulnerability Analysis of Com-
puter Systems”, In Proceedings on the 2nd International Workshop
on Verification Model Checking and Abstract Interpretation, Pisa,
IT, Sep. 19, 1998, pp. 1-8.

Red Hat, “Configuring OpenSSH”, Red Hat Enterprise Linux,
accessed Aug. 15, 2014, pp. 1-6, available at: https://access.redhat.
com/documentation/en-US/Red_ Hat_ Enterprise_ Linux/7/html/
System__Administrators_ Guide/s1-ssh-configuration.html.
Reynolds, J. et al., “Online Intrusion Protection by Detecting
Attacks with Diversity”. In Proceedings of the 16th International
Conference on Data and Applications Security, Cambridge, GB, Jul.
28-31, 2002, pp. 245-256.

Reynolds, J. et al., “The Design and Implementation of an Intrusion
Tolerant System”, In Proceedings of the International Conference
on Dependable Systems and Networks (DSN *02), Jun. 23-26, 2002,
Bethesda, MD, US, pp. 285-292.

Riley, M. et al., “Missed Alarms and 40 Million Stolen Credit Card
Numbers: How Target Blew It”, In Bloomberg Businessweek, Mar.
13, 2014, pp. 1-10, available at: http://www.businessweek.com/
articles/2014-03-13/target-missedalarms-in-epic-hack-of-credit-
card-data.

Rinard, M. et al. “Enhancing Server Availability and Security
Through Failure-Oblivious Computing”, In Proceedings 6th Sym-
posium on Operating Systems Design and Implementation (OSDI
’04), San Francisco, CA, US, Dec. 6-8, 2004, pp. 303-316.
Rinard, M. et al., “A Dynamic Technique for Eliminating Buffer
Overflow Vulnerabilities (and Other Memory Errors)”, In Proceed-
ings 20th Annual Computer Security Applications Conference
(ACSAC ’04), Tucson, AZ, US, Dec. 6-10, 2004, pp. 82-90.
Robichaux, P., “Managing the Windows NT Registry, Chapter 8:
Administering the Windows NT Registry” 1st Edition, O’Reilly &
Associates, Apr. 1998, pp. 231-272.

Roesch, M., “Snort: Lightweight Intrusion Detection for Net-
works”, In Proceedings of the 13th Conference on Systems Admin-
istration (LISA °99), Seattle, WA, US, Nov. 7-12, 1999, pp. 229-
238.

Rosenblum, M. et al., “Using the SimOS Machine Simulator to
Study Complex Computer Systems”, In ACM Transactions on
Modeling and Computer Simulation, vol. 7, No. 1, Jan. 1997, pp.
76-103.

Rudys, A. and Wailach, D.S., “Termination in Language-Based
Systems”, In ACM Transactions on Information and System Secu-
rity (TISSEC °02), vol. 5, No. 2, May 2002, pp. 138-168.

Rudys, A. and Wallach, D.S., “Transactional Rollback for Lan-
guage-Based Systems”, In Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN ’02), Bethesda,
MD, US, Jun. 23-26, 2002, pp. 439-448.

Russinovich, M. and Cogswell, B., “Filemon for Windows NT/9x”,
last updated Aug. 14, 2000, pp. 1-3, available at: https://web.
archive.org/web/20000815094424/http://www.sysinternals.com/
filemon.htm.

US 9,450,979 B2
Page 8

(56) References Cited
OTHER PUBLICATIONS

Russinovich, M. and Cogswell, B., “Regmon for Windows NT/9x”,
last updated Nov. 1, 2006, pp. 1-4. available at: https://web.archive/
org/web/20000308184259/http://www.sysinternals.com/ntw2k/
source/regmon.shtm.

Scholkopf, B. et al., “Estimating the Support of a High-Dimensional
Distribution”, Technical Report MSR-TR-99-87, Microsoft
Research, Sep. 18, 2000, pp. 1-30.

Schonlau, M. et al., “Computer Intrusion: Detecting Masquerades”,
In Statistical Science, vol. 16, No. 1, Feb. 2001, pp. 58-74.
Schultz, M.D. et al. “MEF: Malicious Email Filter—A UNIX Mail
Filter that Detects Malicious Windows Executables”, In Proceed-
ings of the FREENIX Track: 2001 USENIX Annual Technical
Conference, Boston, MA, US, Jun. 25-30, 2001, pp. 245-252.
Schultz, M.G. et al., “Data Mining Methods for Detection of New
Malicious Executables”, In Proceedings of the IEEE Symposium on
Security and Privacy (S&P ’01), Oakland, CA, US, May 14-18,
2001, pp. 38-49.

Schwartzbard, A. and Ghosh, AK., “Study in the Feasibility of
Performing Host-based Anomaly Detection on Windows NT”, In
Proceedings of the 2nd International Workshop on Recent Advances
in Intrusion Detection, Sep. 7-9, 1999, West Lafayette, IN, US, pp.
1-10.

Security Space, “Web Server Survey”, Security Space, May 1, 2003,
pp. 1, available at: http://www.securityspace.com/s_ survey/data/
200304/

Sekar, R. et al. “Specification-Based Anomaly Detection: A New
Approach for Detecting Network Intrusions”, In Proceedings of the
9th ACM Conference on Computer and Communications Security
(CCS °02), Washington, DC, US, Nov. 18-22, 2002, pp. 265-274.
Sekar, R. et al., “A Fast Automaton-Based Method for Detecting
Anomalous Program Behaviors”, In Proceedings of the IEEE Sym-
posium on Security & Privacy (S&P ’01), Oakland, CA, US, May
14-16, 2001, pp. 144-155.

Sekar, R. et al., “Model-Carrying Code: A Practical Approach for
Safe Execution of Untrusted Applications”, In Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP
’03), Bolton Landing, NY, US, Oct. 19-22, 2003, pp. 15-29.
Seward, J. and Nethercote, N., “Valgrind, An Open-Source Memory
Debugger for x88-GNU/Linux”, Developer.Kde, May 5, 2003, pp.
1-6, available at http://developerkde.org/~sewardj/.

Shacham, H. et al., “On the Effectiveness of Address-Space Ran-
domization”, In Proceedings of the 11th ACM Conference on
Computer and Communications Security (CCS ’04), Washington,
DC, US, Oct. 25-29, 2004, pp. 298-307.

Shavlik, J. et al., “Evaluating Software Sensors for Actively Pro-
filing Windows 2000 Computer Users”, In Proceedings of the 4th
International Symposium on Recent Advances in Intrusion Detec-
tion (RAID ’01), Davis, CA, US, Oct. 10-12, 2001, pp. 1-17.
Shoch, J.F. and Hupp, J.A., “The ‘Worm’ Programs—FEarly Experi-
ments with a Distributed Computation”, In Communications of the
ACM, vol. 22, No. 3, Mar. 1982, pp. 172-180.

Sidiroglou, S. and Keromytis, A.D., “A Network Worm Vaccine
Architecture”, In Proceedings of the Twelfth IEEE International
Workshops on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE °03), Workshop on Enterprise Security,
Linz, AT, Jun. 9-11, 2003, pp. 220-225.

Sidiroglou, S. et al., “Budding a Reactive Immune System for
Software Services”, In Proceedings of the 2005 USENIX Annual
Technical Conference (USENIX ’05), Anaheim, CA, US, Apr.
10-15, 2005, pp. 149-161.

Sidiroglou, S., “Using Execution Transactions to Recover from
Buffer Overflow Attacks”, Technical Report, (month unknown)
2004, pp. 1-16.

Smaha, S.E., “Haystack: An Intrusion Detection System”, In the
Fourth Aerospace Computer Security Applications Conference
(IEEE Cat. No. CH2619-5 *88), Orlando, FL, US, Dec. 12-16, 1988,
pp. 37-44.

Smimov, A. and Chiueh. T., “DIRA: Automatic Detection, Identi-
fication, and Repair of Control-Hijacking Attacks”, In Proceedings

of the 12th Symposium on Network and Distributed System Secu-
rity (NDSS °05), San Diego, CA, US, Feb. 3-4, 2005, pp. 1-17.
Somayaji, A. et al., “Principles of a Computer Immune System”, In
Proceedings of the New Security Paradigms Workshop, Langdale,
UK, Sep. 23-26, 1997, pp. 75-82.

Somayaji, A.B., “Operating System Stability and Security through
Process Homeostasis”, Dissertation, Massachusetts Institute of
Technology, Jul. 2002, pp. 1-198.

Song, D. et al., “A Snapshot of Global Internet Worm Activity,”
Technical Report, Arbor Networks, Nov. 13, 2001, pp. 1-7.

Soni, S., “Understanding Linux Configuration Files”, Technical
Report, IBM developerWorks, Dec. 1, 2001, pp. 1-11, available at:
http://www.ibm.com/developerworks/library/l-config/.

Sourceware, “Summary of GDB”, last accessed Aug. 28, 2014, pp.
1, available at: https://sourceware.org/gdb/current/onlinedocs/gdb/
Summary.html#Summary.

Spafford, E.H., “The Internet Worm Program: An Analysis”, Tech-
nical Report CSD-TR-823, Purdue University, Dec. 8, 1988, pp.
1-40.

Stamp, M., “Risks of Monoculture”, In Communications of the
ACM, vol. 47, No. 3, Mar. 2004, pp. 120.

Staniford, S. et al., “How to Own the Internet in Your Spare Time”,
In Proceedings of the 11th USENIX Security Symposium, San
Francisco, CA, US, Aug. 5-9, 2002, pp. 149-167.

Street, W.N., “A Streaming Ensemble Algorithm (SEA) for Large-
Scale Classification”, In Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing, San Francisco, CA, US, Aug. 26-29, 2001, pp. 377-382.
Sugerman, J. et al., “Virtualizing I/O Devices on VMware Work-
station’s Hosted Virtual Machine Monitor”, In Proceedings of the
2001 USENIX Annual Technical Conference (USENIX ’01), Bos-
ton, MA, US, Jun. 26-30, 2001, pp. 1-14.

Suh, G.E. et al., “Secure Program Execution via Dynamic Infor-
mation Flow Tracking”, In Proceedings of the 11th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS °04) Boston, MA, US, Oct. 7-13,
2004, pp. 85-96.

Sun, “SunSHIELD Basic Security Module Guide”, Sun
Microsystems, Inc., (month unknown) 1995, pp. 1-196.

Sun, “SunSHIELD Basic Security Module Guide”, Sun
Microsystems, Inc., (month unknown) 2000, pp. 1-239.
Symantec, “Happy99.Worm”, Symantec.com, Feb. 13, 2007, pp.
1-9, available at: http://www.symantec.com/qvcenter/venc/data/
happy99.worm.html.

Symantec, “The Digital Immune System: Enterprise-Grade Anti-
Virus Automation in the 21st Century”, Technical Brief, Symantec,
(month unknown) 2001, pp. 1-16.

Szor, P., “The Art of Computer Virus Research and Defense”,
Addison-Wesley Professional, Feb. 13, 2005, pp. 1-617.

Tandon, G., “Learning Rules From System Call Arguments and
Sequences for Anomaly Detection”, In Proceedings of ICDM Work-
shop on Data Mining for Computer Security (DMSEC °03), Mel-
bourne, FL, US, Nov. 19, 2003, pp. 20-29.

Taylor, C. and Alves-Foss, J., “NATE-Network Analysis of Anoma-
lous Traffic Events, A Low-Cost Approach”, In New Security
Paradigms Workshop (NSPW ’01), Cloudcroft, NM, US, Sep.
10-13, 2002, pp. 69-96.

Teng, H.S. et al., “Adaptive Real-Time Anomaly Detection Using
Inductively Generated Sequential Patterns”, In Proceedings of the
IEEE Symposium on Security and Privacy (S&P ’90), Oakland, CA,
US, May 7-9, 1990, pp. 278-284.

Toth, T. and Kruegel, C., “Accurate Buffer Overflow Detection via
Abstract Payload Execution”, In Proceedings of the Sth Symposium
on Recent Advances in Intrusion Detection (RAID *02) Zurich, CH,
Oct. 16-18, 2002, pp. 274-291.

Toth, T. and Kruegel, C., “Connection-History Based Anomaly
Detection”, In Proceedings of the 2002 IEEE Workshop on Infor-
mation Assurance and Security (IAS ’02), West Point, NY, US, Jun.
17-19, 2002, pp. 30-35.

Toyoizumi, H. and Kara, A., “Predators: Good Will Mobile Codes
Combat against Computer Viruses”, In Proceedings of the 2002
Workshop on New Security Paradigms (NSPW °02), Virginia
Beach, VA, US, Sep. 23-26, 2002, pp. 11-17.

US 9,450,979 B2
Page 9

(56) References Cited
OTHER PUBLICATIONS

Tripwire, “Tripwire Intrusion Detection System 1.3 for LINUX
User Manual”, Jul. 27, 1998, pp. 1-46.

Tripwire, Inc. “Tripwire 2.4 Reference Guide”, (month unknown)
2001, pp. 1-140.

Tripwire, Inc. “Tripwire for Servers 2.4 User Guide”, (month
unknown) 2001, pp. 1-118.

Tsymbal, A., “The Problem of Concept Drift: Definitions and
Related Work”, Technical Report TCD-CS-2004-15, Department of
Computer Science, Trinity College Dublin, IE Apr. 2004, pp. 1-7.
Twycross, T and Williamson, M.M., “Implementing and Testing a
Virus Throttle”, In Proceedings of the 12th USENIX Security
Symposium, Washington, DC, US, Aug. 4-8, 2003, pp. 285-294.
U.S. Appl. No. 10/352,342, flied Jan. 27, 2003.

U.S. Appl. No. 12/091,150, filed Apr. 22, 2008.

U.S. Appl. No. 13/301,741, filed Nov. 21, 2011.

U.S. Appl. No. 60/308,623, filed Jul. 30, 2001.

U.S. Appl. No. 60/351,857, filed Jan. 25, 2002.

U.S. Appl. No. 60/730,289, filed Oct. 25, 2005.

U.S. Appl. No. 60/855,704, filed Oct. 30, 2006.

U.S. Appl. No. 60/856,669, filed Nov. 3, 2006.

Valcare, EM. et al., excerpts from “ESSENCE: An Experiment in
Knowledge-Based Security Monitoring and Control”, In USENIX
Security Symposium III Proceedings, Baltimore, MD, US, Sep.
1992, pp. 155-169.

Vendicator, “Stack Shield: A ‘Stack Smashing” Technique Protec-
tion Tool for Linux”, Jan. 7, 2000, pp. 1, available at: http:/
angelfire.com/sk/stackshield.

Vigna, C. and Kemmerer, R.A., “NetSTAT: A Network-Based
Intrusion Detection System”, In Journal of Computer Security, vol.
7, No. 1, Sep. 1999, pp. 37-71.

Viljanen, L., “A Survey of Application Level Intrusion Detection”,
Technical Report, University of Helsinki, FI, Dec. 2004, pp. 1-32.
Wang, C. et al., “On Computer Viral Infection and the Effect of
Immunization”, In Proceedings of the 16th Annual Computer Secu-
rity Applications Conference (ACSAC *00), New Orleans, LA, US,
Dec. 11-15, 2000, pp. 246-256.

Wang, N.J. et al., “Y-Branches: When You Come to a Fork in the
Road, Take It”, In Proceedings of the 12th International Conference
on Parallel Architectures and Compilation Techniques (PACT ’03),
New Orleans, LA, US, Sep. 27-Oct. 1, 2003, pp. 56-66.
Warrender, C. et al., “Detecting Intrusions Using System Calls:
Alternative Data Models”, In IEEE Symposium on Security and
Privacy (S&P °99), Oakland, CA, US, May 9-12, 1999, pp. 133-145.
Webb, A.R., excerpts from Statistical Pattern Recognition, Oxford
University Press, (month unknown) 1999, pp. 347.

Whitaker, A. et al., “Scale and Performance in the Denali Isolation
Kernel”, In Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation (OSDI *02), Boston, MA, US,
Dec. 9-11, 2002, pp. 195-209.

White, SR., “Anatomy of a Commercial-Grade Immune System”,
In Proceedings of the Ninth International Virus Bulletin Conference,
Vancouver, BC, CA, Sep. 30, 1999, pp. 1-26.

White, S.R.,“Open Problems in Computer Virus Research”, Tech-
nical Report, IBM Thomas J. Watson Research Center, Oct. 1998,
pp. 1-10, available at: http://www.research.ibm.com/antivirus/
SciPapers/White/Problems/Problems/html.

Whittaker, J.A., “No Clear Answers on Monoculture Issues”, In
IEEE Security & Privacy, vol. 1, No. 6, Nov./Dec. 2003, pp. 18-19.
Wilander, J. and Kamkar, M., “A Comparison of Publicly Available
Tools for Dynamic Buffer Overflow Prevention”, In Proceedings of
the 10th Network and Distributed System Security Symposium
(NDSS °03), San Diego, CA, USA, Feb. 6-7, 2003, pp. 1-14.
Williamson, M.M., “Throttling Viruses: Restricting Propagation to
Defeat Malicious Mobile Code”, Technical Report HPL-2002-172,
HP Laboratories Bristol, Dec. 10, 2002, pp. 1-8.

Witten, L.H. and Frank, E., “Data Mining: Practical Machine Learn-
ing Tools and Techniques with Java Implementations”, (month
unknown) 2000. pp. 1-369.

Written Opinion dated Jun. 12, 2008 in International Patent Appli-
cation No. PCT/US2007/083003.

Written Opinion dated Jun. 25, 2006 in International Patent Appli-
cation No. PCT/US2006/041591.

Ye, N., “A Markov Chain Model of Temporal Behavior for Anomaly
Detection”, In Proceedings of the IEEE Workshop on Information
Assurance and Security (IAS ’00), West Point, NY, US, Jun. 6-7,
2000, pp. 171-174.

Yeung, D -Y. and Ding, Y., “Host-Based Intrusion Detection using
Dynamic and Static Behavioral Models”, In Pattern Recognition,
vol. 36, No. 1, Jan. 2003, pp. 229-243.

Yin, J. et al., “Separating Agreement from Execution for Byzantine
Fault Tolerant Services”, In Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles (SOSP *03), Bolton Landing,
NY, US, Oct. 19-22, 2003, pp. 253-267.

Zou, C.C. et al., “Code Red Worm Propagation Modeling and
Analysis”, In Proceedings of the 9th ACM Conference on Computer
and Communications Security (CCS ’02), Washington, DC, US,
Nov. 18-22, 2002, pp. 138-147.

Zou, C.C. et al., “Monitoring and Early Warning for Internet
Worms”, In Proceedings of the 10th ACM International Conference
on Computer and Communications Security (CCS ’03), Washing-
ton, DC, US, Oct. 27-30, 2003, pp. 190-199.

Zweinenberg, R., excerpts from “Heuristics Scanners: Artificial
Intelligence”, In Proceedings of Virus Bulletin Conference, Boston,
MA, US, Sep. 20-22, 1995, pp. 205-209.

Decision, The Trustees of Columbia University in the City of New
York v. Symantec Corporation, Appeal No. 2015-1146 (Fed. Cir.)
(Feb. 2, 2016), 21 pages.

Petitioner’s Reply to Patent Owner Response in The Trustees of
Columbia University in the City of New York v. Symantec Corpo-
ration, IPR2015-00375, Jan. 8, 2016, 31 pages.

Petitioner’s Reply to Patent Owner Response in The Trustees of
Columbia University in the City of New York v. Symantec Corpo-
ration, IPR2015-00377, Jan. 14, 2016, 28 pages.

Exhibit List in The Trustees of Columbia University in the City of
New York v. Symantec Corporation, IPR2015-00375, Jan. 8, 2016,
9 pages.

Exhibit List in The Trustees of Columbia University in the City of
New York v. Symantec Corporation, IPR2015-00377, Jan. 14, 2016,
9 pages.

(Exhibit 1013) Dec. 4, 2015 Deposition Transcript of Mr. Scott
Lewandowski in The Trustees of Columbia University in the City of
New York v. Symantec Corporation, IPR2015-00375 and IPR2015-
00377, Jan. 8, 2016, 189 pages.

(Exhibit 1014) Dec. 10-11, 2015 Deposition Transcript of George
Cybenko, Ph.D. in The Trustees of Columbia University in the City
of New York v. Symantec Corporation, TPR2015-00375 and
IPR2015-00377, Jan. 8, 2016, 293 pages.

(Exhibit 1015) Supplemental Declaration of Michael T. Goodrich,
Ph.D. in The Trustees of Columbia University in the City of New
York v. Symantec Corporation, IPR2015-00375, Jan. 7, 2016, 13
pages.

(Exhibit 1015) Supplemental Declaration of Michael T. Goodrich,
Ph.D. In The Trustees of Columbia University in the City of New
York v. Symantec Corporation, IPR2015-00377, Jan. 13, 2016, 13
pages.

(Exhibit 1016) Hunt, G. and Brubacher, D., “Detours: Binary
Interception of Win32 Functions”, In Proceedings of the 3rd Con-
ference on USENIX Windows N'T Symposium, vol. 3, Jul. 1999, 9
pages.

(Exhibit 1017) Excerpts from the Oct. 17, 2014 Expert Report of
Professor Michael Bailey in The Trustees of Columbia University in
the City of New York v. Symantec Corporation, IPR2015-00375,
Jan. 8, 2016, 7 pages.

Columbia’s Patent Owner Response under 37 C.FR. § 42.108 in
The Trustees of Columbia University in the City of New York v.
Symantec Corporation, IPR2015-00375, filed Oct. 8, 2015, 67
pages.

Declaration of George Cybenko, Ph.D. in Support of Columbia’s
Patent Owner Response in The Trustees of Columbia University in
the City of New York v. Symantec Corporation, IPR2015-00375,
dated Oct. 14, 2015, 126 pages.

US 9,450,979 B2
Page 10

(56) References Cited
OTHER PUBLICATIONS

Declaration of Scott M. Lewandowski in The Trustees of Columbia
University in the City of New York v. Symantec Corporation,
IPR2015-00375, dated Oct. 7, 2015, 18 pages.

Goodrich, Ph.D., Michael T. Deposition Transcript in The Trustees
of Columbia University in the City of New York v. Symantec
Corporation, IPR2015-00375, Aug. 24-26, 2015, 331 pages.
Columbia’s Patent Owner Response under 37 C.FR. § 42.108 in
The Trustees of Columbia University in the City of New York v.
Symantec Corporation, IPR2015-00377, filed Oct. 8, 2015, 65
pages.

Declaration of George Cybenko, Ph.D. in Support of Columbia’s
Patent Owner Response in The Trustees of Columbia University in
the City of New York v. Symantec Corporation, IPR2015-00377,
dated Oct. 14, 2015, 115 pages.

McGraw-Hill Dictionary of Scientific and Technical Terms, defini-
tion of “Anomalous”, Fifth Edition, 1994 (month unknown), 3
pages.

Declaration of Michael T. Goodrich, Ph.D. in Support of Petition for
Inter Partes Review of U.S. Pat. No. 7,448,084 in The Trustees of
Columbia University in the City of New York v. Symantec Corpo-
ration, IPR2015-00375, dated Dec. 4, 2014, 118 pages.

Carey Nachenberg Deposition Transcript in The Trustees of Colum-
bia University in the City of New York v. Symantec Corporation,
IPR2015-00375, Sep. 26, 2014, 16 pages.

Brief of Plantiff-Appellant The Trustees of Columbia University in
the City of New York in The Trustees of Columbia University in the
City of New York v. Symantec Corporation, IPR2015-00375, filed
Jan. 20, 2015, 223 pages.

Stallman, R. et al., excerpts from “Debugging with GDB”, 9th
Edition, 2010 (month unknown), 8 pages.

Shane Pereira Deposition Transcript in The Trustees of Columbia
University in the City of New York v. Symantec Corporation,
IPR2015-00375, Sep. 24, 2014, 16 pages.

Roget’s 21st Century Thesaurus, synonyms of “Reflect”, Aug. 1992,
3 pages.

Wang, K. et al., “Anagram: A Content Anomaly Detector Resistant
to Mimicry Attack”, Technical Report, Columbia University, Com-
puter Science Department, last accessed Apr. 1, 2015, available at:
https://mice.cs.columbia.edu/get Techreport.php?techreportID=403
&format=pdf&, 24 pages.

American Heritage Dictionary of the English Language, definition
of “Portion”, Fourth Edition, 2000 (month unknown), 3 pages.
Microsoft Computer Dictionary, definition of “Program”, Fifth
Edition, 2002 (month unknown), 3 pages.

McGraw-Hill Dictionary of Scientific and Technical Terms, defini-
tion of “Model”, Sixth Edition, 2002 (month unknown), 4 pages.
Microsoft Computer Dictionary, definition of “function call”, Fifth
Edition, 2002 (month unknown), 3 pages.

VMWare.com, “What is Virtualization? Virtualization 1017, avail-
able at: http://www.vmare.com/virtualization/how-it-works html,
last accessed Sep. 27, 2015, 5 pages.

Fosler-Lussier, E., “Markov Models and Hidden Markov Models: A
Brief Tutorial”, Technical Report TR-98-041, International Com-
puter Science Institute, Berkeley, CA, US, Dec. 1998, 9 pages.
Shawe-Taylor, J. and Zlicar, B., “Novelty Detection with One-Class
Support Vector Machines”, in Advances in Statistical Models for
Data Analysis, Springer International Publishing, 2015 (month
unknown), 27 pages.

Landi, W., “Undecidability of Static Analysis”, in ACM Letters on
Programming Languages and Systems, vol. 1, No. 4, Dec. 1992, 17
pages.

Microsoft, “Dynamic-Link Libraries”, available at: https://msdn.
microsoft.com/en-us/library/windows/desktop/ms682589(v=vs.
85).aspx, last accessed Oct. 7, 2015, 1 page.

Microsoft, “Linking an Executable to a DLL”, available at: https://
msdn.microsoft.com/en-us/library/9yd93633 (d=printer).aspx, last
accessed Oct. 7, 2015, 1 page.

Steane, A M., “Quick Introduction to Windows API”, available at:
https://users.physics.ox.ac.uk/~Steane/cpp__help/winapi__intro.
htm, last accessed Oct. 7, 2015, 5 pages.

Random House Webster’s College Dictionary, definition of “Emu-
late”, 2005 (month unknown), 3 pages.

Lo, J, “VMware and CPU Virtualization Technology”,
VMworld2005 virtualize now, filed Oct. 8, 2015, 34 pages.
VMware, “Understanding Full Virtualization, Paravirtualization,
and Hardware Assist”, filed Oct. 8, 2015, 17 pages.

Apache HTTP Server Wiki, “FAQ?”, available at: http://wiki.apache.
org/httpd/FAQ, last updated Jan. 21, 2014, 34 pages.

Naude, F., “FAQ about Oracle Corporation”, Oracle, available at:
http://web.archive.org/web/2003 1014203617 /http://www.orafaq.
com/faqora.htm, last updated Jul. 26, 2003, 5 pages.

Griffin, “Virtual Machines: Virtualization vs. Emulation”, Grif-
fincaprio.com, available at: www.griffincaprio.com/blog/2006/08/
virtual-machines-virtual-machines-virtualization-vs-emulation.
html, Aug. 16, 2006, 1 page.

Rossey, L.M. et al., “LARIAT: Lincoln Adaptable Real-time Infor-
mation Assurance Testbed”, In Proceedings of IEEE Aerospace
Conference Proceedings, Big Sky, MT, US, Mar. 9-16, 2002, 11
pages.

Haldar, S. and Aravind, A.A., “Operating Systems”, Pearson, Apr.
2010, 29 pages.

Ross, S., “A First Course in Probability”, Prentice Hall, Sixth
Edition, Jul. 31, 2001, 9 pages.

Goodrich, Ph.D., Michael T. Deposition Transcript in The Trustees
of Columbia University in the City of New York v. Symantec
Corporation, IPR2015-00375, Sep. 28-30, 2015, 437 pages.
Microsoft, “The Main Function and Program Execution”, Microsoft
Developer Network Visual Studio, available at: https://msdn.
microsoft.com/en-us/library/3zedytsc, last accessed Apr. 1, 2015, 1
page.

Prakash, A. et al., “Enforcing System-Wide Control Flow Integrity
for Exploit Detection and Diagnosis”, In Proceedings of the 8th
ACM SIGSAC Symposium on Information, Computer and Com-
munications Security, Hangzhou, CN, May 8-10, 2013, 14 pages.
Declaration of Michael T. Goodrich, Ph.D. in Support of Petition for
Inter Partes Review of U.S. Pat. No. 7,448,084 in The Trustees of
Columbia University in the City of New York v. Symantec Corpo-
ration, IPR2015-00377, dated Dec. 4, 2014, 118 pages.

Carey Nachenberg Deposition Transcript in The Trustees of Colum-
bia University in the City of New York v. Symantec Corporation,
IPR2015-00377, Sep. 26, 2014, 16 pages.

Brief of Plaintiff-Appellant the Trustees of Columbia University in
the City of New York in The Trustees of Columbia University in the
City of New York v. Symantec Corporation, IPR2015-00377, dated
Jan. 20, 2015, 223 pages.

Bickel, E.J., “Teaching Decision Making with Baseball Examples”,
In Informs Transactions on Education, 5:1, 2004 (month unknown),
available at: http://faculty.engr.texas.edu/bickel/Papers/Teaching
Decision_ Making.pdf, 8 pages.

Zhang, Q. and Reeves, D.S., “MetaAware: Identifying Metamorphic
Malware”, In Proceedings of the 23rd Annual Computer Security
Applications Conference, Miami Beach, FL, US, Dec. 10-14, 2007,
13 pages.

Declaration of Scott M. Lewandowski in The Trustees of Columbia
University in the City of New York v. Symantec Corporation,
IPR2015-00377, Oct. 14, 2015, 18 pages.

Russinovich, M. and Solomon, D., “Inside Microsoft Windows
20007, 3rd Edition, Sep. 2000, 110 pages.

Russinovich, M. and Solomon, D., “Examining the Windows 95
Registry”, In Windows Developer’s Journal, vol. 7, No. 10, Oct.
1996, 6 pages.

Debbabi, M. et al., “Monitoring Malicious Activity in Software
Systems”, In lst Symposium on Requirements Engineering for
Information Security, Mar. 2011, 15 pages.

RAID, “Raid 2001 Program,” Davis, CA, US, Oct. 12, 2001,
available at: https://web.archive.org/web/2001121095823/http://
www.raid-symposium.org/traid2001/program.html, 3 pages.
RAID, “Call for Papers-RAID 2001 Fourth International Sympo-
sium on Rental Advances in Intrusion Detection”, Davis, CA, US,

US 9,450,979 B2
Page 11

(56) References Cited
OTHER PUBLICATIONS

Oct. 10-12, 2001, available at:https://web.archive.org/web/
20014052029 1 1/http://www.raid-symposium.org/raid2001/CFP__
RAID2001.html, 4 pages.

Microsoft Computer Dictionary, “window definition function”
through “Windows 987, 4th Ed., Microsoft Press, 1999 (month
unknown), 3 pages.

Columbia University’s Patent Owner Preliminary Response in The
Trustees of Columbia University in the City of New Yorkv. Symantec
Corporation, IPR2015-00375, filed Apr. 6, 2015, 69 pages.
Columbia University’s Patent Owner Preliminary Response in The
Trustees of Columbia University in the City of New Yorkv. Symantec
Corporation, IPR2015-00377, filed Apr. 2, 2015, 69 pages.
Institution of Inter Partes Review Decision, in The Trustees of
Columbia University in the City of New York v. Symantec Corpo-
ration, IPR2015-00375, Paper 13, entered Jul. 1, 2015, 21 pages.
Institution of Inter Partes Review Decision, in The Trustees of
Columbia University in the City of New York v. Symantec Corpo-
ration, IPR2015-00377, Paper 13, entered Jul. 1, 2015, 19 pages.
“U.S. Pat. No. 7,448,084 and U.S. Pat. No. 7,913,306: Detecting
Anomalous Registry Access”, in The Trustees of Columbia Univer-
sity in New York City v. Symantec Corporation, Action No. 3:13-
CV-00808-JRS, United States District Court for the Eastern District
of Virginia, Richmond Division, filed Sep. 4, 2014, 85 pages.
“U.S. Pat. No. 8,074,115, and/or U.S. Pat. No. 8,601,322: Identi-
fying Anomalous Function Calls”, in The Trustees of Columbia
University in New York City v. Symantec Corporation, Action No.
3:13-CV-00808-JRS, United States District Court for the Eastern
District of Virginia, Richmond Division, filed Sep. 4, 2014, 56
pages.

“Columbia University’s Claim Construction Presentation”, in The
Trustees of Columbia University in New York City v. Symantec
Corporation, Action No. 3:13-CV-00808-JRS, United States Dis-
trict Court for the Eastern District of Virginia, Richmond Division,
filed Sep. 4, 2014, 77 pages.

Columbia University’s Opening Claim Construction Brief in The
Trustees of Columbia University in the City of New Yorkv. Symantec
Corporation, Action No. 3:13-CV-00808-JRS, United States Dis-
trict Court for the Eastern District of Virginia, Richmond Division,
filed Aug. 15, 2014, 37 pages.

Declaration of Gavin Snyder in Support of Columbia University’s
Opening Claim Construction Brief and Supporting Exhibits A-W,
filed on Aug. 15, 2014, 341 pages.

Declaration of Professor Douglas C. Szajda, filed on Aug. 15, 2014,
41 pages.

Symantec Corporation’s Opening Claim Construction Brief in The
Trustees of Columbia University in the City of New Yorkv. Symantec
Corporation, Action No. 3:13-CV-00808-JRS, United States Dis-
trict Court for the Eastern District of Virginia, Richmond Division,
filed Aug. 15, 2014, 39 pages.

Declaration of Nathan A. Hamstra in Support of Symantec Corpo-
ration’s Opening Claim Construction Brief and Supporting Exhibits
1-29, filed on Aug. 15, 2014, 504 pages.

Declaration of Dr. Richard Ford in Support of Symantec Corpora-
tion’s Opening Claim Construction Brief and Supporting Exhibits
A-B, filed on Aug. 15, 2014, 19 pages.

Declaration of Dr. Trent Jaeger in Support of Symantec Corpora-
tion’s Opening Claim Construction Brief and Supporting Exhibits
A-B, filed on Aug. 15, 2014, 60 pages.

Columbia University’s Responsive Claim Construction Brief in The
Trustees of Columbia University in The City of New York v.
Symantec Corporation, Action No. 3:13-CV-00808-JRS, United
States District Court for the Fastern District of Virginia, Richmond
Division, filed Aug. 28, 2014, 35 pages.

Second Declaration of Gavin Snyder in Support of Columbia
University’s Responsive Claim Construction Brief and Supporting
Exhibits X-II, filed on Aug. 28, 2014, 209 pages.

Second Declaration of Professor Douglas C. Szajda, filed on Aug.
28, 2014, 9 pages.

Symantec Corporation’s Responsive Claim Construction Brief in
The Trustees of Columbia University in the City of New York v.
Symantec Corporation, Action No. 3:13-CV-00808-JRS, United
States District Court for the Eastern District of Virginia, Richmond
Division, filed Aug. 28, 2014, 34 pages.

Declaration of Nathan A. Hamstra in Support of Symantec Corpo-
ration’s Responsive Claim Construction Brief and Supporting
Exhibits 1-3, filed on Aug. 28, 2014, 41 pages.

Transcript of Markman Hearing Transcript in The Trustees of
Columbia University in the City of New York v. Symantec Corpo-
ration, Action No. 3:13-CV-808, United States District Court for the
Eastern District of Virginia, Richmond Division, filed Sep. 4, 2014,
176 pages.

Claim Construction Order in The Trustees of Columbia University
in the City of New York v. Symantec Corporation, Action No.
3:13-CV-808, United States District Court for the Eastern District of
Virginia, Richmond Division, filed Oct. 7, 2014, 2 pages.
Memorandum in Support of Motion for Clarification of Claim
Construction Order in The Trustees of Columbia University in the
City of New York v. Symantec Corporation, Action No. 3:13-CV-
00808-JRS, United States District Court for the Eastern District of
Virginia, Richmond Division, filed Oct. 9, 2014, 5 pages.
Symantec’s Memorandum Opposition Columbia’s Motion Clarifi-
cation of the Court’s Claim Construction Order in The Trustees of
Columbia University in the City of New York v. Symantec Corp.,
Action No. 3:13-CV-00808-JRS, US District Court for the Eastern
District of VA, Richmond Division, filed Oct. 10, 2014, 6 pages.
Memorandum Order Clarifying Claim Construction in The Trustees
of Columbia University in the City of New York v. Symantec
Corporation, Action No. 3:13-CV-808, United States District Court
for the Eastern District of Virginia, Richmond Division, filed Oct.
23, 2014, 2 pages.

Petition for Inter Partes Review of U.S. Pat. No. 8,074,115, Case
No. IPR2015-00375, filed on Dec. 5, 2014, 50 pages.

Declaration of Michael T. Goodrich, Ph.D. in Support of Petition for
Inter Partes Review of U.S. Pat. No. 8,074,115, Case No. IPR2015-
00375, filed on Dec. 5, 2014, 138 pages.

Patent File History of U.S. Appl. No. 12/091,150, filed Jun. 15,
2009, 327 pages.

Petitioner Power of Attorney for U.S. Pat. No. 8,074,115, Case No.
IPR2015-00375, filed on Dec. 5, 2014, 2 pages.

Petition for Inter Partes Review of U.S. Pat. No. 8,601,322, Case
No. IPR2015-00377, filed on Dec. 5, 2014, 39 pages.

Declaration of Michael T. Goodrich, Ph.D. in Support of Petition for
Inter Partes Review of U.S. Pat. No. 8,601,322, Case No. IPR2015-
00377, filed on Dec. 4, 2014, 114 pages.

Patent File History of U.S. Appl. No. 13/301,741, filed Nov. 21,
2011, 321 pages.

Petitioner Power of Attorney for U.S. Pat. No. 8,601,322, Case No.
IPR2015-00377, filed Dec. 5, 2014, 2 pages.

Curriculum Vitae of Michael T. Goodrich, Ph.D., filed on Dec. 5,
2014, 29 pages.

Plaintiff’s Prior Art Statement in The Trustees of Columbia Uni-
versity in the City of New Yorkv. Symantec Corporation, Action No.
3:13-CV-808, United States District Court for the Eastern District of
Virginia, Richmond Division, filed Oct. 20, 2014, 93 pages.
Defendant Symantec Corporation’s Preliminary Invalidity Conten-
tions and Supporting Exhibits in The Trustees of Columbia Univer-
sity in the City of New York v. Symantec Corporation, Action No.
3:13-CV-808, United States District Court for the Eastern District of
Virginia, Richmond Division, filed May 12, 2014, 6842 pages.
Redacted Version Expert Report Dr. Richard Ford re: Invalidity U.S.
Pat. Nos. 7,448,084, 7,913,306, 8,074,115 & U.S. Pat. No.
8,601,322 &support. App.2 in The Trustees of CU in the City of NY
v. Symantec Corp., Action No. 3:13-CV-00808-JRS, US District
Court for the Eastern District of VA ,Richmond Div. filed Oct. 20,
2014, 633 pages.

McGraw-Hill Dictionary of Scientific and Technical Terms, defini-
tion of “Markov process”, Fifth Edition, 1994 (month unknown), 3

pages.

* cited by examiner

U.S. Patent Sep. 20, 2016 Sheet 1 of 9 US 9,450,979 B2

190

i

.

SERVER

j11)

, INTE T, INTRANET,
AN WAN, BTC)

2 2 162

WORKSTATION o WORKETATION L/ WORENTATHIN L

FiG. 1

U.S. Patent

Sheet 2 of 9

Sep. 20, 2016 US 9,450,979 B2

L COMMUNICATIONS
RETWORK

/,l*f.??i

R i 3}‘}

e SE 204 Py PR
: §

PROCESSIR

206
&

INPUT
DEVICE

MEMORY

PROCESSOR |

DASPLAY

R
!_f“ A
{

T

&

i

INPUT
DEVICE

BESMORY

U.S. Patent Sep. 20, 2016 Sheet 3 of 9 US 9,450,979 B2

304

N

o)

MEONTRORING
OF B

AN APFPLICATHON FORVARIOUS TYPES
JRES USING ONE OR MORE SENSORS

o soein

¥

CTING THAT A FAULT MAY OCCUR OR
T"F“??f‘”‘?\u AFAULT THAT OCCURRED IN AT LEARTY
APQRTICN OF THE APPLICATION S COLER.G,,
DETERMINING WHICH PORTIONS QF THE

APPLICATION ARE VULNMERABLE TO FAULTS ANDAQR

320

»

NFTHAT A FALILT MAY OCCUR OR
SALLT QCCURRED, BOLATING
THE PORTION OF THE APPLICAHION'S CODE HAVING
THE PAULTY INSTRUCTION

ok

o by

X

GENERATING AN INSTRUMENTED VERSION OF THE
FORTION FAFMICATIONS CQDE OR
WRAFPING THAT PORTHOIN OF THE APPLICATHON'S

CQBE

¥

WHERE THE F LL O(.&i&E«LE} LSEZ\{; i.viii;-
AL AT BASED VACUINE (5.G TRESTING WIHITH
THE INPUTS SEENK BEFORE THE FALLTQCOURRED)

N VT-.; (}{:{\{ §i\ ’}}{}_};}ix { '&_{)\E\;{:‘i ﬂ{}i%ﬂ\

U.S. Patent Sep. 20, 2016 Sheet 4 of 9 US 9,450,979 B2

H¥

_

DETEOTING THAT A PAULT HAS GCCURRED (B 4L, 35{

HLLEGAL MEMORY DEREFERERCES, ETC)} THAY -
CALRES THE APPLICATION TO ABORY

k.4

oy

GENERATING A CORE DUMP AND GATHERING OTHER &;‘:i}

INFORMATION IN BESPONSE TO DUETECTING THAT ’/’

THE FAULT HAS QCCURRED (B4, TYPE OF PAILURE,
STACK TRALE, BT

¥
INOLATING A PQRTION GV THE APPLICATION'S TR
BASED AV LEAST IN PART ONTHE CORE DUMP AND
THEOTHER GATHRERED INFORMATHIN, WHERE THAY
PORTION OF THE AFPLECATION COUE WIHLL BE
EXE P UNDHER EMULATION TO DETRCY 4
RECOVER FROM PUTURE INSTANCES OF THE Fallly

A

arvone T5k

.

o

US 9,450,979 B2

Sheet 5 of 9

Sep. 20, 2016

U.S. Patent

£

e

ped

7o

gt

%

% ua\\\ »\\\\\M

:M\\. “4

erriren,

U.S. Patent Sep. 20, 2016 Sheet 6 of 9 US 9,450,979 B2

$60

~

DIVIDING AN APPLICATIONCS CODE INTO BORTIONS OF CUDE

¥ &3
MOWITORING THE PORTION QF CODE USING ONE OF THE i
PLURALITY OF DEVICES FORVARIQUS TYPES OF FAILURES

¥ ¥
FREDICTING THAT A FAUL - DETHECTING THAY
MAY QUUIR INTHE 3 FAULY HAX QUL
RMOGKITORED FORTION OF CODE .,»j THAT CAUSES THE
R0, VULNERABLE TO EATLASR APPLICATION T
ANDVOR ATTACKS) ABORT OROTHERWIRE
FAJL

FiGL 6

U.S. Patent Sep. 20, 2016 Sheet 7 of 9

US 9,450,979 B2

U.S. Patent Sep. 20, 2016 Sheet 8 of 9 US 9,450,979 B2

800

;.

\ Detect function call
being made

Compare function
call to model

Identify function
call as anomalous

806

U.S. Patent Sep. 20, 2016 Sheet 9 of 9 US 9,450,979 B2

Create Compression
Maodel

91
R S ooy &
Execute Known | 1~

Program{s}

‘ - 536
T s =) /
Lompress g Execute Unknown

sequence of Program

function calls

L 531

* C @mp{ 58 Se{,}u&aﬂ& g

& Mﬂm’ . . \. “}- ¥ ﬁ' L
.‘/3“ R% g 1 i\i %i /“‘ . ;

-

B
920 p ' :
/ Compressed /
/ isvfiag.s.x,-mt, of ;’W 3
Execution /
,»-'"t”\\ 3%
» " “\«h\\ ‘f
e T
MM,.» ‘l‘q {i}{‘ f;;x penes \\\\
< wue >
. ‘x\di Compressed?

No /e~ - \‘iﬁ 935
J.! Ry H
¥ : v

. %4 1 Anomalous | Non-Anomalous
FIG. 9 Sequence | Sequence

US 9,450,979 B2

1

METHODS, MEDIA, AND SYSTEMS FOR
DETECTING AN ANOMALOUS SEQUENCE
OF FUNCTION CALLS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/942,632, filed Jul. 15, 2013, which is a
continuation of U.S. patent application Ser. No. 13/397,670,
filed Feb. 15, 2012, which is a continuation of U.S. patent
application Ser. No. 12/447,946, filed Mar. 2, 2010, which is
the U.S. National Phase Application under 35 U.S.C. §371
of International Application No. PCT/US2007/083003, filed
Oct. 30, 2007, which claims the benefit of U.S. Provisional
Patent Application No. 60/855,704, filed Oct. 30, 2006 and
U.S. Provisional Patent Application No. 60/856,669, filed
Nov. 3, 2006, each of which is hereby incorporated by
reference herein in its entirety.

TECHNOLOGY AREA

The disclosed subject matter relates to methods, media,
and systems for detecting an anomalous sequence of func-
tion calls.

BACKGROUND

Applications may terminate due to any number of threats,
program errors, software faults, attacks, or any other suitable
software failure. Computer viruses, worms, trojans, hackers,
key recovery attacks, malicious executables, probes, etc. are
a constant menace to users of computers connected to public
computer networks (such as the Internet) and/or private
networks (such as corporate computer networks). In
response to these threats, many computers are protected by
antivirus software and firewalls. However, these preventa-
tive measures are not always adequate. For example, many
services must maintain a high availability when faced by
remote attacks, high-volume events (such as fast-spreading
worms like Slammer and Blaster), or simple application-
level denial of service (DoS) attacks.

Aside from these threats, applications generally contain
errors during operation, which typically result from pro-
grammer error. Regardless of whether an application is
attacked by one of the above-mentioned threats or contains
errors during operation, these software faults and failures
result in illegal memory access errors, division by zero
errors, buffer overflows attacks, etc. These errors cause an
application to terminate its execution or “crash.”

SUMMARY

Methods, media, and systems for detecting an anomalous
sequence of function calls are provided. In some embodi-
ments, methods for detecting an anomalous sequence of
function calls is provided. The methods including compress-
ing a sequence of function calls made by the execution of a
program using a compression model; and determining the
presence of an anomalous sequence of function calls in the
sequence of function calls based on the extent to which the
sequence of function calls is compressed. In some embodi-
ments, the methods further include executing at least one
known program; observing at least one sequence of function
calls made by the execution of the at least one known
program; assigning each type of function call in the at least
one sequence of function calls made by the at least one

10

15

20

25

30

35

40

45

50

55

60

65

2

known program a unique identifier; and creating at least part
of'the compression model by recording at least one sequence
of'unique identifiers based on the unique identifiers assigned
to each type of function call and the observed at least one
sequence of function calls.

In some embodiments, computer-readable media contain-
ing computer-executable instructions that, when executed by
a processor, cause the processor to perform a method for
detecting an anomalous sequence of function calls are
provided. The methods including compressing a sequence of
function calls made by the execution of a program using a
compression model; and determining the presence of an
anomalous sequence of function calls in the sequence of
function calls based on the extent to which the sequence of
function calls is compressed. In some embodiments, the
methods further include executing at least one known pro-
gram; observing at least one sequence of function calls made
by the execution of the at least one known program; assign-
ing each type of function call in the at least one sequence of
function calls made by the at least one known program a
unique identifier; and creating at least part of the compres-
sion model by recording at least one sequence of unique
identifiers based on the unique identifiers assigned to each
type of function call and the observed at least one sequence
of function calls.

In some embodiments, systems for detecting an anoma-
lous sequence of function calls including a memory; and a
processor in communication with the memory are provided.
Wherein the processor compresses a sequence of function
calls made by the execution of a program using a compres-
sion model; and determines the presence of an anomalous
sequence of function calls in the sequence of function calls
based on the extent to which the sequence of function calls
is compressed. In the some embodiments, the processor
further executes at least one known program; observes at
least one sequence of function calls made by the execution
of the at least one known program; assigns each type of
function call in the at least one sequence of function calls
made by the at least one known program a unique identifier;
and creates at least part of the compression model by
recording at least one sequence of unique identifiers based
on the unique identifiers assigned to each type of function
call and the observed at least one sequence of function calls.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of an illustrative system
suitable for implementation of an application that monitors
other applications and protects these applications against
faults in accordance with some embodiments;

FIG. 2 is a detailed example of the server and one of the
workstations of FIG. 1 that may be used in accordance with
some embodiments;

FIG. 3 shows a simplified diagram illustrating repairing
faults in an application and updating the application in
accordance with some embodiments;

FIG. 4 shows a simplified diagram illustrating detecting
and repairing an application in response to a fault occurring
in accordance with some embodiments;

FIG. 5 shows an illustrative example of emulated code
integrated into the code of an existing application in accor-
dance with some embodiments;

FIG. 6 shows a simplified diagram illustrating detecting
and repairing an application using an application community
in accordance with some embodiments of the disclosed
subject matter;

US 9,450,979 B2

3

FIG. 7 shows an illustrative example of a table that may
be calculated by a member of the application community for
distributed bidding in accordance with some embodiments
of the disclosed subject matter; and

FIG. 8 shows a simplified diagram illustrating shows
identifying a function call as being anomalous in accordance
with some embodiments.

FIG. 9 shows a simplified illustration of methods for
generating a compression model and detecting an anomalous
sequence of function calls in accordance with some embodi-
ments.

DETAILED DESCRIPTION

Methods, media, and systems for detecting an anomalous
sequence of function calls and/or detecting anomalous pro-
gram executions are provided. In some embodiments, sys-
tems and methods are provided that model application level
computations and running programs, and that detect anoma-
lous executions by, for example, instrumenting, monitoring
and analyzing application-level program function calls and/
or arguments. Such an approach can be used to detect
anomalous program executions that may be indicative of a
malicious attack or program fault.

The anomaly detection algorithm being used may be, for
example, a probabilistic anomaly detection (PAD) algorithm
or a one class support vector machine (OCSVM), which are
described below, or any other suitable algorithm.

Anomaly detection may be applied to process execution
anomaly detection, file system access anomaly detection,
and/or network packet header anomaly detection. Moreover,
as described herein, according to various embodiments, an
anomaly detector may be applied to program execution state
information. For example, as explained in greater detail
below, an anomaly detector may model information on the
program stack to detect anomalous program behavior.

In various embodiments, using PAD to model program
stack information, such stack information may be extracted
using, for example, Selective Transactional EMulation
(STEM), which is described below and which permits the
selective execution of certain parts, or all, of a program
inside an instruction-level emulator, using the Valgrind
emulator, by modifying a program’s binary or source code
to include indicators of what functions calls are being made
(and any other suitable related information), or using any
other suitable technique. In this manner, it is possible to
determine dynamically (and transparently to the monitored
program) the necessary information such as stack frames,
function-call arguments, etc. For example, one or more of
the following may be extracted from the program stack
specific information: function name, the argument buffer
name it may reference, and other features associated with the
data sent to or returned from the called function (e.g., the
length in bytes of the data, or the memory location of the
data).

For example, as illustrated in FIG. 8, an anomaly detector
may be applied, for example, by extracting data pushed onto
the stack (e.g., by using an emulator or by modifying a
program), and creating a data record provided to the
anomaly detector for processing at 802. According to vari-
ous embodiments, in a first phase, an anomaly detector
models normal program execution stack behavior. In the
detection mode, after a model has been computed, the
anomaly detector can detect stacked function references as
anomalous at 806 by comparing those references to the
model based on the training data at 804.

10

15

20

25

30

35

40

45

50

55

60

65

4

Once an anomaly is detected, according to various
embodiments, selective transactional emulation (STEM)
and error virtualization may be used to reverse (undo) the
effects of processing the malicious input (e.g., changes to
program variables or the file system) in order to allow the
program to recover execution in a graceful manner. In this
manner, the precise location of the failed (or attacked)
program at which an anomaly was found may be identified.
Also, the application of an anomaly detector to function calls
can enable rapid detection of malicious program executions,
such that it is possible to mitigate against such faults or
attacks (e.g., by using patch generation systems, or content
filtering signature generation systems). Moreover, given
precise identification of a vulnerable location, the perfor-
mance impact may be reduced by using STEM for parts or
all of a program’s execution.

As explained above, anomaly detection can involve the
use of detection models. These models can be used in
connection with automatic and unsupervised learning.

In some embodiments, such models can be created from
a training set of function calls and optionally at least some
of their arguments. For example, a model can include a
compressed series of function calls observed by execution of
a training set of known non-anomalous applications. Various
compression techniques can be used in various embodi-
ments. For example, in some embodiments, a compression
model can be used as a dictionary in a compression tech-
nique, such as Lempel-Ziv-Welch (LZW) compression.
More particularly, for example, if each function call is
assigned an identifier (e.g., a two digit number, a string, a
code, etc.), a sequence of function calls can appear as a
series of identifiers. Different series of identifiers in a
training set can then be used to form a library or table of
sequences which can be part of a compression model. A
determination can then be made as to whether a sequence of
function calls is anomalous based upon how well they can be
compressed using a compression model (e.g., a dictionary, a
library, a table of sequences) derived from the training set.
If a stream of function calls can be compressed well using
a model (e.g., created from known non-anomalous applica-
tions), then training and test sets have similar function calls
and the function calls can be considered non-anomalous.
However, if the test set cannot be compressed well, then the
test set may contain anomalous function calls. The determi-
nation of the extent to which test data needs to be com-
pressed in order to be found to be non-anomalous can be
performed using various techniques, such as, for example,
techniques based on empirical data and/or user and/or
administrator settings.

FIG. 9 illustrates a method for the creation of a compres-
sion model at 910. This can include executing, at 911, one
or more known non-anomalous programs and compressing,
at 912, sequence of observed function calls, to generate a
compression model 920. A test program can be executed, at
930, and a sequence of function calls resulting from the
program’s execution can be compressed, at 931, using
compression model 920, to generate a compressed sequence
of function calls 932. It can be determined, at 933, whether
the compressed sequence 932 is well compressed. This can
be based on, for example, the percent of function calls that
were not compressed, the length of various sequences of
uncompressed function calls, the distance between uncom-
pressed function calls, the density and/or distribution of
uncompressed function calls, and/or the number of unique
uncompressed sequences and/or unique uncompressed func-
tion calls. If the compressed sequence 932 is well com-
pressed, it can be considered non-anomalous, at 935. If it is

US 9,450,979 B2

5

not well compressed, it can be considered anomalous, at
934. If a program execution is considered anomalous, vari-
ous recovery actions can be performed, such as those
described herein. In some embodiments, programs executed
at 911 can be known anomalous programs and determina-
tions of a sequence 932 being well compressed can indicate
anomalous sequences. Some embodiments can create vari-
ous models 920, including models of both anomalous and
non-anomalous programs. In such embodiments, a com-
pressed sequence 931 can be compared to various models.

In some embodiments, execution, at 930, can include
execution of all or part of a program and can be performed,
for example, natively or in an emulator. If an anomalous
sequence is detected, at 933, one or more of the function
calls and/or the order of the function calls can be altered to
make the sequence of function calls non-anomalous, execu-
tion 930 can be rolled back, and/or execution 930 can be
terminated. In various embodiments, a compressed sequence
932 may not be formed and/or stored in memory. Instead
compression 931 can feed directly into the determination, at
933, of how well (or not well) a test program is compressed.
The determination, at 933, can take place, for example,
continuously during execution, at 930, at intervals and/or
breaks in execution, at 930, or upon completion of execu-
tion, at 930. In various embodiments, differentiation of
function calls (e.g. for assigning them a compression value)
can be based on, for example, the value of an argument or
arguments, the number of arguments, and/or the identity of
the function (e.g., based on a memory address). In various
embodiments, creation, at 910, execution, at 930, and/or
determination, at 933, can take place on the same digital
processing device or on different digital processing devices.
Compression model 920 can include various compression
models formed by executing various training data on various
digital processing devices.

A probabilistic anomaly detection (PAD) algorithm can
also be used to train a model for detecting anomalies. In
various embodiments such a model can be used in place of,
in addition to, or in combination with, for example, a
compression model (e.g., model 926). This model may be, in
essence, a density estimation, where the estimation of a
density function p(x) over normal data allows the definition
of' anomalies as data elements that occur with low probabil-
ity. The detection of low probability data (or events) are
represented as consistency checks over the normal data,
where a record is labeled anomalous if it fails any one of
these tests.

First and second order consistency checks can be applied.
First order consistency checks verify that a value is consis-
tent with observed values of that feature in the normal data
set. These first order checks compute the likelihood of an
observation of a given feature, P(Xi), where Xi are the
feature variables. Second order consistency checks deter-
mine the conditional probability of a feature value given
another feature value, denoted by P(XilXj), where Xi and X
are the feature variables.

One way to compute these probabilities is to estimate a
multinomial that computes the ratio of the counts of a given
element to the total counts. However, this results in a biased
estimator when there is a sparse data set. Another approach
is to use an estimator to determine these probability distri-
butions. For example, let N be the total number of obser-
vations, Ni be the number of observations of symbol i, a be
the “pseudo count” that is added to the count of each
observed symbol, k° be the number of observed symbols,

10

15

20

25

35

40

45

50

55

60

65

6

and L be the total number of possible symbols. Using these
definitions, the probability for an observed element i can be
given by:

Ni+a
Ka+N

®

P(X=i)=

and the probability for an unobserved element i can be:

P(X=i)= @

1
L_ko(l—C)

where C, the scaling factor, accounts for the likelihood of

observing a previously observed element versus an unob-
served element. C can be computed as:

-3

k=k0

3
Ko+ N =

koz+Nmk

-1
Z]
=0

where

k' Tke)

—ps=h— Y
me =P8 = s Tha v)

and P(s=k) is a prior probability associated with the size of
the subset of elements in the alphabet that have non-zero
probability.

Because this computation of C can be time consuming, C
can also be calculated by:

N
TN+L-4O

c @)

The consistency check can be normalized to account for the
number of possible outcomes of L by log(PI(1IL))=log(P)+
log(L).

Another approach that may be used instead of using PAD
for model generation and anomaly detection is a one class
SVM (OCSVM) algorithm. The OCSVM algorithm can be
used to map input data into a high dimensional feature space
(via a kernel) and iteratively find the maximal margin
hyperplane which best separates the training data from the
origin. The OCSVM may be viewed as a regular two-class
SVM where all the training data lies in the first class, and the
origin is taken as the only member of the second class. Thus,
the hyperplane (or linear decision boundary) can correspond
to the classification rule:

J@=(mx)+b ®

where w is the normal vector and b is a bias term. The
OCSVM can be used to solve an optimization problem to
find the rule f with maximal geometric margin. This classi-
fication rule can be used to assign a label to a test example
x. I[f {(x)<0, x can be labeled as an anomaly, otherwise it can
be labeled as normal. In practice, there is a trade-off between
maximizing the distance of the hyperplane from the origin
and the number of training data points contained in the
region separated from the origin by the hyperplane.

US 9,450,979 B2

7

Solving the OCSVM optimization problem can be
equivalent to solving the dual quadratic programming prob-
lem:

1 6
mgnEZw;ij(x;,xj-) ©
7
subject to the constraints
0= o < i (7)
vl

and

®)

where ¢, is a lagrange multiplier (or “weight” on example i
such that vectors associated with non-zero weights are called
“support vectors” and solely determine the optimal hyper-
plane), v is a parameter that controls the trade-off between
maximizing the distance of the hyperplane from the origin
and the number of data points contained by the hyperplane,
1 is the number of points in the training dataset, and K(x;, x,)
is the kernel function. By using the kernel function to project
input vectors into a feature space, nonlinear decision bound-
aries can be allowed for. Given a feature map:

X—~RY ©

where ¢ maps training vectors from input space X to a
high-dimensional feature space, the kernel function can be
defined as:

K= 00,009)

Feature vectors need not be computed explicitly, and
computational efficiency can be improved by directly com-
puting kernel values K(x,y). Three common kernels can be
used:

Linear kernel: K(x,y)=(x'y)

Polynomial Kernel: K(x,y)=(x-y+1)?, where d is the

degree of the polynomial

Gaussian kernel: K(x,y)=c""172%) where o? is the

variance

Kernels from binary feature vectors can be obtained by
mapping a record into a feature space such that there is one
dimension for every unique entry for each record value. A
particular record can have the value 1 in the dimensions
which correspond to each of its specific record entries, and
the value O for every other dimension in feature space.
Linear kernels, second order polynomial kernels, and gauss-
ian kernels can be calculated using these feature vectors for
each record. Kernels can also be calculated from frequency-
based feature vectors such that, for any given record, each
feature corresponds to the number of occurrences of the
corresponding record component in the training set. For
example, if the second component of a record occurs three
times in the training set, the second feature value for that
record is three. These frequency-based feature vectors can
be used to compute linear and polynomial kernels.

According to various embodiments, “mimicry attacks”
which might otherwise thwart OS system call level anomaly
detectors by using normal appearing sequences of system
calls can be detected. For example, mimicry attacks are less
likely to be detected when the system calls are only modeled
as tokens from an alphabet, without any information about

10)

10

15

20

25

30

35

40

45

50

55

60

65

8

arguments. Therefore, according to various embodiments,
the models used are enriched with information about the
arguments (data) such that it may be easier to detect mimicry
attacks.

According to various embodiments, models are shared
among many members of a community running the same
application (referred to as an “application community”). In
particular, some embodiments can share models with each
other and/or update each other’s models such that the
learning of anomaly detection models is relatively quick.
For example, instead of running a particular application for
days at a single site, according to various embodiments,
thousands of replicated applications can be run for a short
period of time (e.g., one hour), and the models created based
on the distributed data can be shared. While only a portion
of'each application instance may be monitored, for example,
the entire software body can be monitored across the entire
community. This can enable the rapid acquisition of statis-
tics, and relatively fast learning of an application profile by
sharing, for example, aggregate information (rather than the
actual raw data used to construct the model).

Model sharing can result in one standard model that an
attacker could potentially access and use to craft a mimicry
attack. Therefore, according to various embodiments,
unique and diversified models can be created. For example,
such unique and diversified models can be created by
randomly choosing particular features from the application
execution that is modeled, such that the various application
instances compute distinct models. In this manner, attacks
may need to avoid detection by multiple models, rather than
just a single model. Creating unique and diversified models
not only has the advantage of being more resistant to
mimicry attacks, but also may be more efficient. For
example, if only a portion of an application is modeled by
each member of an application community, monitoring will
generally be simpler (and cheaper) for each member of the
community. In the event that one or more members of an
application community are attacked, according to various
embodiments, the attack (or fault) will be detected, and
patches or a signature can be provided to those community
members who are blind to the crafted attack (or fault).

Random (distinct) model building and random probing
may be controlled by a software registration key provided by
a commercial off-the-shelf (COTS) software vendor or some
other data providing “randomization.” For example, for each
member of an application community, some particular ran-
domly chosen function or functions and its associated data
may be chosen for modeling, while others may simply be
ignored. Moreover, because vendors can generate distinct
keys and serial numbers when distributing their software,
this feature can be used to create a distinct random subset of
functions to be modeled. Also, according to various embodi-
ments, even community members who model the same
function or functions may exchange models.

According to various embodiments, when an application
execution is being analyzed over many copies distributed
among a number of application community members to
profile the entire code of an application, it can be determined
whether there are any segments of code that are either rarely
or never executed, and a map can be provided of the code
layout identifying “suspect code segments” for deeper
analysis and perhaps deeper monitoring. Those segments
identified as rarely or never executed may harbor vulner-
abilities not yet executed or exploited. Such segments of
code may have been designed to execute only for very
special purposes such as error handling, or perhaps even for
triggering malicious code embedded in the application.

US 9,450,979 B2

9

Since they are rarely or never executed, one may presume
that such code segments have had less regression testing,
and may have a higher likelihood of harboring faulty code.

Rarely or never executed code segments may be identified
and may be monitored more thoroughly through, for
example, emulation. This deep monitoring may have no
discernible overhead since the code in question is rarely or
never executed. But such monitoring performed in each
community member may prevent future disasters by pre-
venting such code (and its likely vulnerabilities) from being
executed in a malicious/faulty manner. Identifying such
code may be performed by a sensor that monitors loaded
modules into the running application (e.g., DLL loads) as
well as addresses (PC values) during code execution and
creates a “frequency” map of ranges of the application code.
For example, a set of such distributed sensors may commu-
nicate with each other (or through some site that correlates
their collective information) to create a central, global MAP
of the application execution profile. This profile may then be
used to identify suspect code segments, and then subse-
quently, this information may be useful to assign different
kinds of sensors/monitors to different code segments. For
example, an interrupt service routine (ISR) may be applied
to these suspect sections of code.

It is noted that a single application instance may have to
be run many times (e.g., thousands of times) in order to
compute an application profile or model. However, distrib-
uted sensors whose data is correlated among many (e.g., a
thousand) application community members can be used to
compute a substantially accurate code profile in a relatively
short amount of time. This time may be viewed as a “training
period” to create the code map.

According to various embodiments, models may be auto-
matically updated as time progresses. For example, although
a single site may learn a particular model over some period
of time, application behavior may change over time. In this
case, the previously learned model may no longer accurately
reflect the application characteristics, resulting in, for
example, the generation of an excessive amount of false
alarms (and thus an increase in the false positive rate over
time). A possible solution to this “concept drift” issue entails
at least two possible approaches, both intended to update
models over time. A first approach to solving (or at least
reducing the effects of) the “concept drift” issue involves the
use of “incremental learning algorithms,” which are algo-
rithms that piecemeal update their models with new data,
and that may also “expire” parts of the computed model
created by older data. This piecemeal incremental approach
is intended to result in continuous updating using relatively
small amounts of data seen by the learning system.

A second approach to solving (or at least reducing the
effect of) the “concept drift” issue involves combining
multiple models. For example, presuming that an older
model has been computed from older data during some
“training epoch,” a new model may be computed concur-
rently with a new epoch in which the old model is used to
detect anomalous behavior. Once a new model is computed,
the old model may be retired or expunged, and replaced by
the new model. Alternatively, for example, multiple models
such as described above may be combined. In this case,
according to various embodiments, rather than expunging
the old model, a newly created model can be algorithmically
combined with the older model using any of a variety of
suitable means. In the case of statistical models that are
based upon frequency counts of individual data points, for
example, an update may consist of an additive update of the
frequency count table. For example, PAD may model data

10

15

20

25

30

40

45

50

10

by computing the number of occurrences of a particular data
item, “X.” Two independently learned PAD models can thus
have two different counts for the same value, and a new
frequency table can be readily computed by summing the
two counts, essentially merging two tables and updating
common values with the sum of their respective counts.

According to various embodiments, the concept of model
updating that is readily achieved in the case of computed
PAD models may be used in connection with model sharing.
For example, rather than computing two models by the same
device for a distinct application, two distinct models may be
computed by two distinct instances of an application by two
distinct devices, as described above. The sharing of models
may thus be implemented by the model update process
described herein. Hence, a device may continuously learn
and update its models either by computing its own new
model, or by downloading a model from another application
community member (e.g., using the same means involved in
the combining of models).

In the manners described above, an application commu-
nity may be configured to continuously refresh and update
all community members, thereby making mimicry attacks
far more difficult to achieve.

As mentioned above, it is possible to mitigate against
faults or attacks by using patch generation systems. In
accordance with various embodiments, when patches are
generated, validated, and deployed, the patches and/or the
set of all such patches may serve the following.

First, according to various embodiments, each patch may
be used as a “pattern” to be used in searching other code for
other unknown vulnerabilities. An error (or design flaw) in
programming that is made by a programmer and that creates
a vulnerability may show up elsewhere in code. Therefore,
once a vulnerability is detected, the system may use the
detected vulnerability (and patch) to learn about other (e.g.,
similar) vulnerabilities, which may be patched in advance of
those vulnerabilities being exploited. In this manner, over
time, a system may automatically reduce (or eliminate)
vulnerabilities.

Second, according to various embodiments, previously
generated patches may serve as exemplars for generating
new patches. For example, over time, a taxonomy of patches
may be assembled that are related along various syntactic
and semantic dimensions. In this case, the generation of new
patches may be aided by prior examples of patch generation.

Additionally, according to various embodiments, gener-
ated patches may themselves have direct economic value.
For example, once generated, patches may be “sold” back to
the vendors of the software that has been patched.

As mentioned above, in order to alleviate monitoring
costs, instead of running a particular application for days at
a single site, many (e.g., thousands) replicated versions of
the application may be run for a shorter period of time (e.g.,
an hour) to obtain the necessary models. In this case, only a
portion of each replicated version of the application may be
monitored, although the entire software body is monitored
using the community of monitored software applications.
Moreover, according to various embodiments, if a software
module has been detected as faulty, and a patch has been
generated to repair it, that portion of the software module, or
the entire software module, may no longer need to be
monitored. In this case, over time, patch generated systems
may have fewer audit/monitoring points, and may thus
improve in execution speed and performance. Therefore,
according to various embodiments, software systems may be
improved, where vulnerabilities are removed, and the need

US 9,450,979 B2

11

for monitoring is reduced (thereby reducing the costs and
overheads involved with detecting faults).

It is noted that, although described immediately above
with regard to an application community, the notion of
automatically identifying faults of an application, improving
the application over time by repairing the faults, and elimi-
nating monitoring costs as repairs are deployed may also be
applied to a single, standalone instance of an application
(without requiring placements as part of a set of monitored
application instances).

Selective transactional emulation (STEM) and error vir-
tualization can be beneficial for reacting to detected failures,
attacks, and or anomalous behavior in software. According
to various embodiments, STEM and error virtualization can
be used to provide enhanced detection of some types of
attacks, and enhanced reaction mechanisms to some types of
attacks/failures.

A learning technique can be applied over multiple execu-
tions of a piece of code (e.g., a function or collection of
functions) that may previously have been associated with a
failure, or that is being proactively monitored. By retaining
knowledge on program behavior across multiple executions,
certain invariants (or probable invariants) may be learned,
whose violation in future executions indicates an attack or
imminent software fault.

In the case of control hijacking attacks, certain control
data that resides in memory is overwritten through some
mechanism by an attacker. That control data is then used by
the program for an internal operation, allowing the attacker
to subvert the program. Various forms of buffer overflow
attacks (stack and heap smashing, jump into libc, etc.)
operate in this fashion. Such attacks can be detected when
the corrupted control data is about to be used by the program
(i.e., after the attack has succeeded). In various embodi-
ments, such control data (e.g., memory locations or registers
that hold such data) that is about to be overwritten with
“tainted” data, or data provided by the network (which is
potentially malicious) can be detected.

In accordance with various embodiments, how data modi-
fications propagate throughout program execution can be
monitored by maintaining a memory bit for every byte or
word in memory. This bit is set for a memory location when
a machine instruction uses as input data that was provided as
input to the program (e.g., was received over the network,
and is thus possibly malicious) and produces output that is
stored in this memory location. If a control instruction (such
as a JUMP or CALL) uses as an argument a value in a
memory location in which the bit is set (i.e., the memory
location is “tainted”), the program or the supervisory code
that monitors program behavior can recognize an anomaly
and raises an exception.

Detecting corruption before it happens, rather than later
(when the corrupted data is about to be used by a control
instruction), makes it possible to stop an operation and to
discard its results/output, without other collateral damage.
Furthermore, in addition to simply retaining knowledge of
what is control and what is non-control data, according to
various embodiments, knowledge of which instructions in
the monitored piece of code typically modify specific
memory locations can also be retained. Therefore, it is
possible to detect attacks that compromise data that are used
by the program computation itself, and not just for the
program control flow management.

According to various embodiments, the inputs to the
instruction(s) that can fail (or that can be exploited in an
attack) and the outputs (results) of such instructions can be
correlated with the inputs to the program at large. Inputs to

10

20

25

30

40

45

55

12

an instruction are registers or locations in memory that
contain values that may have been derived (in full or
partially) by the input to the program. By computing a
probability distribution model on the program input, alter-
nate inputs may be chosen to give to the instruction or the
function (“input rewriting” or “input modification”) when an
imminent failure is detected, thereby allowing the program
to “sidestep” the failure. However, because doing so may
still cause the program to fail, according to various embodi-
ments, micro-speculation (e.g., as implemented by STEM)
can optionally be used to verify the effect of taking this
course of action. A recovery technique (with different input
values or error virtualization, for example) can then be used.
Alternatively, for example, the output of the instruction may
be caused to be a value/result that is typically seen when
executing the program (“output overloading”).

In both cases (input modification or output overloading),
the values to use may be selected based on several different
criteria, including but not limited to one or more of the
following: the similarity of the program input that caused
failure to other inputs that have not caused a failure; the most
frequently seen input or output value for that instruction,
based on contextual information (e.g., when particular
sequence of functions are in the program call stack); and
most frequently seen input or output value for that instruc-
tion across all executions of the instruction (in all contexts
seen). For example, if a particular DIVIDE instruction is
detected in a function that uses a denominator value of zero,
which would cause a process exception, and subsequently
program failure, the DIVIDE instruction can be executed
with a different denominator (e.g., based on how similar the
program input is to other program inputs seen in the past,
and the denominator values that these executions used).
Alternatively, the DIVIDE instruction may be treated as
though it had given a particular division result. The program
may then be allowed to continue executing, while its behav-
ior is being monitored. Should a failure subsequently occur
while still under monitoring, a different input or output value
for the instruction can be used, for example, or a different
repair technique can be used. According to various embodi-
ments, if none of the above strategies is successful, the user
or administrator may be notified, program execution may be
terminated, a rollback to a known good state (ignoring the
current program execution) may take place, and/or some
other corrective action may be taken.

According to various embodiments, the techniques used
to learn typical data can be implemented as designer choice.
For example, if it is assumed that the data modeled is 32-bit
words, a probability distribution of this range of values can
be estimated by sampling from multiple executions of the
program. Alternatively, various cluster-based analyses may
partition the space of typical data into clusters that represent
groups of similar/related data by some criteria. Vector Quan-
tization techniques representing common and similar data
based on some “similarity” measure or criteria may also be
compiled and used to guide modeling.

FIG. 1 is a schematic diagram of an illustrative system
100 suitable for implementation of various embodiments. As
illustrated in FIG. 1, system 100 may include one or more
workstations 102. Workstations 102 can be local to each
other or remote from each other, and can be connected by
one or more communications links 104 to a communications
network 106 that is linked via a communications link 108 to
a server 110.

In system 100, server 110 may be any suitable server for
executing the application, such as a processor, a computer,
a data processing device, or a combination of such devices.

US 9,450,979 B2

13

Communications network 106 may be any suitable computer
network including the Internet, an intranet, a wide-area
network (WAN), a local-area network (LAN), a wireless
network, a digital subscriber line (DSL) network, a frame
relay network, an asynchronous transfer mode (ATM) net-
work, a virtual private network (VPN), or any combination
of any of the same. Communications links 104 and 108 may
be any communications links suitable for communicating
data between workstations 102 and server 110, such as
network links, dial-up links, wireless links, hard-wired links,
etc. Workstations 102 may be personal computers, laptop
computers, mainframe computers, data displays, Internet
browsers, personal digital assistants (PDAs), two-way pag-
ers, wireless terminals, portable telephones, etc., or any
combination of the same. Workstations 102 and server 110
may be located at any suitable location. In one embodiment,
workstations 102 and server 110 may be located within an
organization. Alternatively, workstations 102 and server 110
may be distributed between multiple organizations.

The server and one of the workstations, which are
depicted in FIG. 1, are illustrated in more detail in FIG. 2.
Referring to FIG. 2, workstation 102 may include digital
processing device (such as a processor) 202, display 204,
input device 206, and memory 208, which may be intercon-
nected. In a preferred embodiment, memory 208 contains a
storage device for storing a workstation program for con-
trolling processor 202. Memory 208 may also contain an
application for detecting an anomalous sequence of function
calls and/or detecting and repairing applications from faults
according to various embodiments. In some embodiments,
the application may be resident in the memory of worksta-
tion 102 or server 110.

Processor 202 may use the workstation program to pres-
ent on display 204 the application and the data received
through communication link 104 and commands and values
transmitted by a user of workstation 102. It should also be
noted that data received through communication link 104 or
any other communications links may be received from any
suitable source, such as web services. Input device 206 may
be a computer keyboard, a cursor-controller, a dial, a switch-
bank, lever, or any other suitable input device as would be
used by a designer of input systems or process control
systems.

Server 110 may include processor 220, display 222, input
device 224, and memory 226, which may be interconnected.
In some embodiments, memory 226 contains a storage
device for storing data received through communication link
108 or through other links, and also receives commands and
values transmitted by one or more users. The storage device
can further contain a server program for controlling proces-
sor 220.

In accordance with some embodiments, a self-healing
system that allows an application to automatically recover
from software failures and attacks is provided. By selec-
tively emulating at least a portion or all of the application’s
code when the system detects that a fault has occurred, the
system surrounds the detected fault to validate the operands
to machine instructions, as appropriate for the type of fault.
The system emulates that portion of the application’s code
with a fix and updates the application. This increases service
availability in the presence of general software bugs, soft-
ware failures, attacks.

Turning to FIGS. 3 and 4, simplified flowcharts illustrat-
ing various steps performed in detecting faults in an appli-
cation and fixing the application in accordance with some
embodiments are provided. These are generalized flow

10

15

20

25

30

40

45

50

55

60

65

14

charts. It will be understood that the steps shown in FIGS.
3 and 4 may be performed in any suitable order, some may
be deleted, and others added.

Generally, process 300 begins by detecting various types
of failures in one or more applications at 310 (in some
embodiments, this detection can occur, for example, at 930
and/or 933 of FIG. 9). In some embodiments, detecting for
failures may include monitoring the one or more applica-
tions for failures, e.g., by using an anomaly detector as
described herein. In some embodiments, the monitoring or
detecting of failures may be performed using one or more
sensors at 310. Failures include programming errors, excep-
tions, software faults (e.g., illegal memory accesses, division
by zero, buffer overflow attacks, time-of-check-to-time-of-
use (TOCTTOU) violations, etc.), threats (e.g., computer
viruses, worms, trojans, hackers, key recovery attacks, mali-
cious executables, probes, etc.), and any other suitable fault
that may cause abnormal application termination or
adversely affect the one or more applications.

Any suitable sensors may be used to detect failures or
monitor the one or more applications. For example, in some
embodiments, anomaly detectors as described herein can be
used.

At 320, feedback from the sensors may be used to predict
which parts of a given application’s code may be vulnerable
to a particular class of attack (e.g., remotely exploitable
buffer overflows). In some embodiments, the sensors may
also detect that a fault has occurred. Upon predicting that a
fault may occur or detecting that a fault has occurred, the
portion of the application’s code having the faulty instruc-
tion or vulnerable function can be isolated, thereby localiz-
ing predicted faults at 330.

Alternatively, as shown and discussed in FIG. 4, the one
or more sensor may monitor the application until it is caused
to abnormally terminate. The system may detect that a fault
has occurred, thereby causing the actual application to
terminate. As shown in FIG. 4, at 410, the system forces a
misbehaving application to abort. In response to the appli-
cation terminating, the system generates a core dump file or
produces other failure-related information, at 420. The core
dump file may include, for example, the type of failure and
the stack trace when that failure occurred. Based at least in
part on the core dump file, the system isolates the portion of
the application’s code that contains the faulty instruction at
430. Using the core dump file, the system may apply
selective emulation to the isolated portion or slice of the
application. For example, the system may start with the
top-most function in the stack trace.

Referring back to FIG. 3, in some embodiments, the
system may generate an instrumented version of the appli-
cation (340). For example, an instrumented version of the
application may be a copy of a portion of the application’s
code or all of the application’s code. The system may
observe instrumented portions of the application. These
portions of the application may be selected based on vul-
nerability to a particular class of attack. The instrumented
application may be executed on the server that is currently
running the one or more applications, a separate server, a
workstation, or any other suitable device.

Isolating a portion of the application’s code and using the
emulator on the portion allows the system to reduce and/or
minimize the performance impact on the immunized appli-
cation. However, while this embodiment isolates a portion or
a slice of the application’s code, the entire application may
also be emulated. The emulator may be implemented com-
pletely in software, or may take advantage of hardware
features of the system processor or architecture, or other

US 9,450,979 B2

15

facilities offered by the operating system to otherwise reduce
and/or minimize the performance impact of monitoring and
emulation, and to improve accuracy and effectiveness in
handling failures.

An attempt to exploit such a vulnerability exposes the
attack or input vector and other related information (e.g.,
attacked buffer, vulnerable function, stack trace, etc.). The
attack or input vector and other related information can then
be used to construct a vaccine. A vaccine can be of various
forms, such as, for example, but not limited to, an emulator-
based vaccine, source-code changes, binary rewriting, a fix
that implements array bounds checking at the machine-
instruction level at 350, and/or other fixes based on, for
example, the detected type of failure. The vaccine can then
be tested in the instrumented application using, for example,
an instruction-level emulator (e.g., libtasvm x86 emulator,
STEM x86 emulator, etc.) to determine whether the fault
was fixed and whether any other functionality (e.g., critical
functionality) has been impacted by the fix.

By continuously testing various vaccines using the
instruction-level emulator, the system can verify whether the
specific fault has been repaired by running the instrumented
application against the event sequence (e.g., input vectors)
that caused the specific fault. For example, to verify the
effectiveness of a fix, the application may be restarted in a
test environment or a sandbox with the instrumentation
enabled, and is supplied with the one or more input vectors
that caused the failure. A sandbox generally creates an
environment in which there are strict limitations on which
system resources the instrumented application or a function
of the application may request or access.

At 360, the instruction-level emulator can be selectively
invoked for segments of the application’s code, thereby
allowing the system to mix emulated and non-emulated code
within the same code execution. The emulator may be used
to, for example, detect and/or monitor for a specific type of
failure prior to executing the instruction, record memory
modifications during the execution of the instruction (e.g.,
global variables, library-internal state, libc standard /O
structures, etc.) and the original values, revert the memory
stack to its original state, and simulate an error return from
a function of the application. That is, upon entering the
vulnerable section of the application’s code, the instruction-
level emulator can capture and store the program state and
processes all instructions, including function calls, inside the
area designated for emulation. When the program counter
references the first instruction outside the bounds of emu-
lation, the virtual processor copies its internal state back to
the device processor registers. While registers are updated,
memory updates are also applied through the execution of
the emulation. The program, unaware of the instructions
executed by the virtual processor, continues normal execu-
tion on the actual processor.

In some embodiments, the instruction-level emulator may
be linked with the application in advance. Alternatively, in
response to a detected failure, the instruction-level emulator
may be compiled in the code. In another suitable embodi-
ment, the instruction-level emulator may be invoked in a
manner similar to a modern debugger when a particular
program instruction is executed. This can take advantage of
breakpoint registers and/or other program debugging facili-
ties that the system processor and architecture possess, or it
can be a pure-software approach.

The use of an emulator allows the system to detect and/or
monitor a wide array of software failures, such as illegal
memory dereferences, buffer overtlows, and buffer under-
flows, and more generic faults, such as divisions by zero.

10

15

20

25

30

35

40

45

50

55

60

65

16

The emulator checks the operands of the instructions it is
about to emulate using, at least partially, the vector and
related information provided by the one or more sensors that
detected the fault. For example, in the case of a division by
zero, the emulator checks the value of the operand to the div
instruction. In another example, in the case of illegal
memory dereferencing, the emulator verifies whether the
source and destination address of any memory access (or the
program counter for instruction fetches) points to a page that
is mapped to the process address space using the
mincore() system call, or the appropriate facilities provided
by the operating system. In yet another example, in the case
of buffer overflow detection, the memory surrounding the
vulnerable buffer, as identified by the one or more sensors,
is padded by one byte. The emulator then watches for
memory writes to these memory locations. This may require
source code availability so as to insert particular variables
(e.g., canary variables that launch themselves periodically
and perform some typical user transaction to enable trans-
action-latency evaluation around the clock). The emulator
can thus prevent the overflow before it overwrites the
remaining locations in the memory stack and recovers the
execution. Other approaches for detecting these failures may
be incorporated in the system in a modular way, without
impacting the high-level operation and characteristics of the
system.

For example, the instruction-level emulator may be
implemented as a statically-linked C library that defines
special tags (e.g., a combination of macros and function
calls) that mark the beginning and the end of selective
emulation. An example of the tags that are placed around a
segment of the application’s code for emulation by the
instruction-level emulator is shown in FIG. 5. As shown in
FIG. 5, the C macro emulate_init() moves the program state
(general, segment, eflags, and FPU registers) into an emu-
lator-accessible global data structure to capture state imme-
diately before the emulator takes control. The data structure
can be used to initialize the virtual registers. emulate_
begin() obtains the memory location of the first instruction
following the call to itself. The instruction address may be
the same as the return address and can be found in the
activation record of emulate_begin() four bytes above its
base stack pointer. The fetch/decode/execute/retire cycle of
instructions can continue until either emulate_end() is
reached or when the emulator detects that control is return-
ing to the parent function. If the emulator does not encounter
an error during its execution, the emulator’s instruction
pointer references the emulate_term() macro at completion.
To enable the instrumented application to continue execu-
tion at this address, the return address of the emulate_
begin() activation record can be replaced with the current
value of the instruction pointer. By executing emulate_
term() the emulator’s environment can be copied to the
program registers and execution continues under normal
conditions.

Although the emulator can be linked with the vulnerable
application when the source code of the vulnerable appli-
cation is available, in some embodiments the processor’s
programmable breakpoint register can be used to invoke the
emulator without the running process even being able to
detect that it is now running under an emulator.

In addition to monitoring for failures prior to executing
instructions and reverting memory changes made by a
particular function when a failure occurs (e.g., by having the
emulator store memory modifications made during its
execution), the emulator can also simulate an error return
from the function. For example, some embodiments may

US 9,450,979 B2

17

generate a map between a set of errors that may occur during
an application’s execution and a limited set of errors that are
explicitly handled by the application’s code (sometimes
referred to herein as “error virtualization”). As described
below, the error virtualization features may be based on
heuristics. However, any suitable approach for determining
the return values for a function may be used. For example,
aggressive source code analysis techniques to determine the
return values that are appropriate for a function may be used.
In another example, portions of code of specific functions
can be marked as fail-safe and a specific value may be
returned when an error return is forced (e.g., for code that
checks user permissions). In yet another example, the error
value returned for a function that has failed can be deter-
mined using information provided by a programmer, system
administrator, or any other suitable user.

These error virtualization features allow an application to
continue execution even though a boundary condition that
was not originally predicted by a programmer allowed a
fault to occur. In particular, error virtualization features
allows for the application’s code to be retrofitted with an
exception catching mechanism, for faults that were unan-
ticipated by the programmer. It should be noted that error
virtualization is different from traditional exception han-
dling as implemented by some programming languages,
where the programmer must deliberately create exceptions
in the program code and also add code to handle these
exceptions. Under error virtualization, failures and excep-
tions that were unanticipated by, for example, the program-
mer can be caught, and existing application code can be used
to handle them. In some embodiments, error virtualization
can be implemented through the instruction-level emulator.
Alternatively, error virtualization may be implemented
through additional source code that is inserted in the appli-
cation’s source code directly. This insertion of such addi-
tional source code can be performed automatically, follow-
ing the detection of a failure or following the prediction of
a failure as described above, or it may be done under the
direction of a programmer, system operator, or other suitable
user having access to the application’s source code.

Using error virtualization, when an exception occurs
during the emulation or if the system detects that a fault has
occurred, the system may return the program state to its
original settings and force an error return from the currently
executing function. To determine the appropriate error
value, the system analyzes the declared type of function. In
some embodiments, the system may analyze the declared
type of function using, for example, a TXL script. Generally,
TXL is a hybrid function and rule-based language that may
be used for performing source-to-source transformation and
for rapidly prototyping new languages and language pro-
cessors. Based on the declared type of function, the system
determines the appropriate error value and places it in the
stack frame of the returning function. The appropriate error
value may be determined based at least in part on heuristics.
For example, if the return type is an int, a value of -1 is
returned. If the return type is an unsigned int, the system
returns a 0. If the function returns a pointer, the system
determines whether the returned pointer is further derefer-
enced by the parent function. If the returned pointed is
further dereferenced, the system expands the scope of the
emulation to include the parent function. In another
example, the return error code may be determined using
information embedded in the source code of the application,
or through additional information provided to the system by
the application programmer, system administrator or third

party.

10

15

20

25

30

35

40

45

50

55

60

65

18

In some embodiments, the emulate_end() is located and
the emulation terminates. Because the emulator saved the
state of the application before starting and kept track of
memory modification during the application’s execution, the
system is capable of reversing any memory changes made
by the code function inside which the fault occurred by
returning it to its original setting, thereby nullifying the
effect of the instructions processed through emulation. That
is, the emulated portion of the code is sliced off and the
execution of the code along with its side effects in terms of
changes to memory have been rolled back.

For example, the emulator may not be able to perform
system calls directly without kernel-level permissions.
Therefore, when the emulator decodes an interruption with
an intermediate value of 0x80, the emulator releases control
to the kernel. However, before the kernel executes the
system call, the emulator can back-up the real registers and
replace them with its own values. An INT 0x80 can be issued
by the emulator and the kernel processes the system call.
Once control returns to the emulator, the emulator can
update its registers and restore the original values in the
application’s registers.

If the instrumented application does not crash after the
forced return, the system has successfully found a vaccine
for the specific fault, which may be used on the actual
application running on the server. At 370, the system can
then update the application based at least in part on the
emulation.

In accordance with some embodiments, artificial diversity
features may be provided to mitigate the security risks of
software monoculture.

FIG. 6 is a simplified flowchart illustrating the various
steps performed in using an application community to
monitor an application for faults and repair the application
in accordance with some embodiments. This is a generalized
flow chart. It will be understood that the steps shown in FIG.
6 may be performed in any suitable order, some may be
deleted, and others added.

Generally, the system may divide an application’s code
into portions of code at 610. Each portion or slice of the
application’s code may, for example, be assigned to one of
the members of the application community (e.g., worksta-
tion, server, etc.). Each member of the application commu-
nity may monitor the portion of the code for various types
of failures at 620. As described previously, failures include
programming errors, exceptions, software faults (e.g., illegal
memory accesses, division by zero, buffer overflow attacks,
TOCTTOU violations, etc.), threats (e.g., computer viruses,
worms, trojans, hackers, key recovery attacks, malicious
executables, probes, etc.), and any other suitable fault that
may cause abnormal application termination or adversely
affect the one or more applications.

For example, the system may divide the portions of code
based on the size of the application and the number of
members in the application community (i.e., size of the
application/members in the application community). Alter-
natively, the system may divide the portions of code based
on the amount of available memory in each of the members
of the application community. Any suitable approach for
determining how to divide up the application’s code may
also be used. Some suitable approaches are described here-
inafter.

For example, the system may examine the total work in
the application community, W, by examining the cost of
executing discrete slices of the application’s code. Assuming
a set of functions, F, that comprise an application’s call-
graph, the i” member of F is denoted as f,. The cost of

US 9,450,979 B2

19

executing each f; is a function of the amount of computation
presentin f, (i.e., x,) and the amount of risk in f, (i.e., v,). The
calculation of x, can be driven by at least two metrics: o, the
number of machine instructions executed as part of f; and t,
the amount of time spent executing f, Both o, and t, may vary
as a function of time or application workload according to
the application’s internal logic. For example, an application
may perform logging or cleanup duties after the application
passes a threshold number of requests.

In some embodiments, a cost function may be provided in
two phases. The first phase calculates the cost due to the
amount of computation for each f. The second phase
normalizes this cost and applies the risk factor v, to deter-
mine the final cost of each f, and the total amount of work
in the system. For example, let

=2, "x;

If C(f,, x,)=x/T*100, each cost may be normalized by
grouping a subset of F to represent one unit of work.

In some embodiments, the system may account for the
measure of a function’s vulnerability. For example, the
system treats V, as a discrete variable with a value of a,
where o takes on a range of values according to the amount
of risk such that:

;=

{oz (if fi is vulnerable)

1 (@f fi is not vulnerable)

Given v, for each function, the system may determine the
total amount of work in the system and the total number of
members needed for monitoring:

n

W = Nyuwn = Zvi*ri
il

After the system (e.g., a controller) or after each application
community member has calculated the amount of work in
the system, work units can be distributed. In one example,
a central controller or one of the workstations may assign
each node approximately W/N work units. In another suit-
able example, each member of the application community
may determine its own work set. Each member may iterate
through the list of work units flipping a coin that is weighted
with the value v,*r,. Therefore, if the result of the flip is
“true,” then the member adds that work unit to its work set.

Alternatively, the system may generate a list having n*W
slots. Each function can be represented by a number of
entries on the list (e.g., v,*r;). Every member of the appli-
cation community can iterate through the list, for example,
by randomly selecting true or false. If true, the application
community member monitors the function of the application
for a given time slice. Because heavily weighted functions
have more entries in the list, a greater number of users may
be assigned to cover the application. The member may stop
when its total work reaches W/N. Such an approach offers
statistical coverage of the application.

In some embodiments, a distributed bidding approach
may be used to distribute the workload of monitoring and
repairing an application. Each node in the callgraph G has a
weight v,*r,. Some subset of the nodes in F is assigned to
each application community member such that each member
does no more work than W/N work. The threshold can be
relaxed to be within some range € of W/N, where € is a

15

25

30

35

40

45

50

55

60

20

measure of system fairness. Upon calculating the globally
fair amount of work W/N, each application community
member may adjust its workload by bargaining with other
members using a distributed bidding approach.

Two considerations impact the assignment of work units
to application community members. First, the system can
allocate work units with higher weights, as these work units
likely have a heavier weight due to a high v,. Even if the
weight is derived solely from the performance cost, assign-
ing more members to the work units with higher weights is
beneficial because these members can round-robin the moni-
toring task so that any one member does not have to assume
the full cost. Second, in some situations, v,*r, may be greater
than the average amount of work, W/N. Achieving fairness
means that v,*r, defines the quantity of application commu-
nity members that is assigned to it and the sum of these
quantities defines the minimum number of members in the
application community.

In some embodiments, each application community mem-
ber calculates a table. An example of such a table is shown
in FIG. 7. Upon generating the table, application community
members may place bids to adjust each of their respective
workloads. For example, the system may use tokens for
bidding. Tokens may map directly to the number of time
quanta that an application community member is responsible
for monitoring a work unit or a function of an application.
The system ensures that each node does not accumulate
more than the total number of tokens allowed by the choice
of e.

If an application community member monitors more than
its share, then the system has increased coverage and can
ensure that faults are detected as quickly as possible. As
shown in 630 and 640, each application community member
may predict that a fault may occur in the assigned portion of
code or may detect that a fault has occurred causing the
application to abort, where the assigned portion of the code
was the source of the fault. As faults are detected, applica-
tions members may each proactively monitor assigned por-
tions of code containing the fault to prevent the application
from further failures. As discussed previously, the applica-
tion community member may isolate the portion of the code
that caused the fault and use the emulator to test vaccines or
fixes. At 650, the application community member that
detects or predicts the fault may notify the other application
community members. Other application members that have
succumbed to the fault may be restarted with the protection
mechanisms or fixes generated by the application member
that detected the fault.

Assuming a uniform random distribution of new faults
across the application community members, the probability
of a fault happening at a member, k, is: P (fault)=1/N. Thus,
the probability of k detecting a new fault is the probability
that the fault happens at k and that k detects the fault: P (fault
at k A detection)=1/N*k,, where k; is the percentage of
coverage at k. The probability of the application community
detecting the fault is:

1
— %
N

1=

P(AC detect) = k;

i

As each k; goes to 100%, the above-equation becomes

M-
=1~

US 9,450,979 B2

21

or N/N, a probability of 1 that the fault is detected when it
first occurs. It will also be understood that various embodi-
ments may be presented in terms of program procedures
executed on a computer or network of computers.

A procedure is here, and generally, conceived to be a
self-consistent sequence of steps leading to a desired result.
These steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared
and otherwise manipulated. It proves convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like. However, all of these and similar terms
are to be associated with the appropriate physical quantities
and are merely convenient labels applied to these quantities.

Further, the manipulations performed are often referred to
in terms, such as adding or comparing, which are commonly
associated with mental operations performed by a human
operator. No such capability of a human operator is neces-
sary, or desirable in many cases, in any of the operations
described herein in connection with various embodiments;
the operations are machine operations. Useful machines for
performing the operation of various embodiments include
general purpose digital computers or similar devices.

Some embodiments also provide apparatuses for perform-
ing these operations. These apparatuses may be specially
constructed for the required purpose or it may comprise a
general purpose computer as selectively activated or recon-
figured by a computer program stored in the computer. The
procedures presented herein are not inherently related to a
particular computer or other apparatus. Various general
purpose machines may be used with programs written in
accordance with the teachings herein, or it may prove more
convenient to construct more specialized apparatus to per-
form the described method. The required structure for a
variety of these machines will appear from the description
given.

Some embodiments may include a general purpose com-
puter, or a specially programmed special purpose computer.
The user may interact with the system via e.g., a personal
computer or over PDA, e.g., the Internet an Intranet, etc.
Either of these may be implemented as a distributed com-
puter system rather than a single computer. Similarly, the
communications link may be a dedicated link, a modem over
a POTS line, the Internet and/or any other method of
communicating between computers and/or users. Moreover,
the processing could be controlled by a software program on
one or more computer systems or processors, or could even
be partially or wholly implemented in hardware.

Although a single computer may be used, systems accord-
ing to one or more embodiments are optionally suitably
equipped with a multitude or combination of processors or
storage devices. For example, the computer may be replaced
by, or combined with, any suitable processing system opera-
tive in accordance with the concepts of various embodi-
ments, including sophisticated calculators, hand held, lap-
top/notebook, mini, mainframe and super computers, as well
as processing system network combinations of the same.
Further, portions of the system may be provided in any
appropriate electronic format, including, for example, pro-
vided over a communication line as electronic signals,
provided on CD and/or DVD, provided on optical disk
memory, etc.

Any presently available or future developed computer
software language and/or hardware components can be
employed in such embodiments. For example, at least some

10

15

20

30

35

40

45

50

55

60

65

22

of the functionality mentioned above could be implemented
using Visual Basic, C, C++ or any assembly language
appropriate in view of the processor being used. It could also
be written in an object oriented and/or interpretive environ-
ment such as Java and transported to multiple destinations to
various users.

Other embodiments, extensions, and modifications of the
ideas presented above are comprehended and within the
reach of one skilled in the field upon reviewing the present
disclosure. Accordingly, the scope of the present invention
in its various aspects is not to be limited by the examples and
embodiments presented above. The individual aspects of the
present invention, and the entirety of the invention are to be
regarded so as to allow for modifications and future devel-
opments within the scope of the present disclosure. For
example, the set of features, or a subset of the features,
described above may be used in any suitable combination.
The present invention is limited only by the claims that
follow.

What is claimed is:
1. A method of computing a model of program execution
behavior, comprising:
assigning, using a hardware processor, a first sequence of
function calls to a first computing device of an appli-
cation community and a second sequence of function
calls to a second computing device of the application
community, wherein the application community
includes a plurality of computing devices running a
program that executes the first sequence of function
calls and the second sequence of function calls;

receiving a first model of the first sequence of function
calls from the first computing device and a second
model of the second sequence of function calls from the
second computing device;

generating a combined model that combines at least a

portion of the first model and at least a portion of the
second model; and

notifying at least one of the plurality of computing

devices in the application community of an anomalous
function call that was detected using the combined
model.

2. The method of claim 1, wherein at least one of the first
model and the second model is generated using probabilistic
modeling that generates a density estimation of sequences of
function calls.

3. The method of claim 2, further comprising:

applying first and second order consistency checks,

wherein the first order consistency check comprises
computing a first probability of an observation of a first
given feature value and the second order consistency
check comprises computing a second probability of the
first given feature value given another feature value;
and

identifying the first given feature value as anomalous if at

least one of the first probability and the second prob-
ability are less than a predetermined threshold prob-
ability.

4. The method of claim 1, wherein at least one of the first
model and the second model is generated using a one-class
support vector machine.

5. The method of claim 1, further comprising:

determining whether a function call from at least one of

the first sequence of function calls and the second
sequence of function calls has been executed less than
a threshold number of times; and

US 9,450,979 B2

23

in response to the determination, identifying the function
call as having a greater likelihood of including an
anomaly.

6. The method of claim 1, further comprising transmitting
the second model from the second computing device to the
first computing device.

7. The method of claim 1, further comprising transmitting
the first model from the first computing device to the second
computing device.

8. The method of claim 1, further comprising:

modifying a first portion of the combined model with

newly obtained data; and

removing a second portion of the combined model,

wherein the second part of the combined model was
generated with older data.

9. The method of claim 1, wherein the first computing
device of the application community monitors a first portion
of the program and the second computing device of the
application community monitors a second portion of the
program, wherein the first portion of the program and the
second portion of the program are different portions of the
program.

10. The method of claim 1, wherein the plurality of
computing devices in the application community run the
program or a portion thereof, or run an application that
allows the plurality of computing devices to share informa-
tion that is used to build the combined model for the
program.

11. The method of claim 1, wherein the combined model
is generated in whole or in part from executing the first
sequence of function calls and the second sequence of
function calls, wherein the detection of the anomalous
function call using the combined model indicates behavior
that deviates from normal and may correspond to an attack,
wherein the detection is based on a statistical analysis, and
wherein the combined model incorporates information about
known or suspected attacks against at least a part of the
program.

12. A system for computing a model of program execution
behavior, comprising:

a hardware processor that is programmed to:

assign a first sequence of function calls to a first
computing device of an application community and
a second sequence of function calls to a second
computing device of the application community,
wherein the application community includes a plu-
rality of computing devices running a program that
executes the first sequence of function calls and the
second sequence of function calls;

receive a first model of the first sequence of function
calls from the first computing device and a second
model of the second sequence of function calls from
the second computing device;

generate a combined model that combines at least a
portion of the first model and at least a portion of the
second model; and

notify at least one of the plurality of computing devices
in the application community of an anomalous func-
tion call that was detected using the combined
model.

13. The system of claim 12, wherein at least one of the
first model and the second model is generated using proba-
bilistic modeling that generates a density estimation of
sequences of function calls.

14. The system of claim 13, wherein the hardware pro-
cessor is further programmed to:

20

25

30

35

40

45

50

55

60

o

5

24

apply first and second order consistency checks, wherein
the first order consistency check comprises computing
a first probability of an observation of a first given
feature value and the second order consistency check
comprises computing a second probability of the first
given feature value given another feature value; and

identify the first given feature value as anomalous if at
least one of the first probability and the second prob-
ability are less than a predetermined threshold prob-
ability.

15. The system of claim 12, wherein at least one of the
first model and the second model is generated using a
one-class support vector machine.

16. The system of claim 12, wherein the hardware pro-
cessor is further programmed to:

determine whether a function call from at least one of the

first sequence of function calls and the second sequence
of function calls has been executed less than a threshold
number of times; and

in response to the determination, identify the function call

as having a greater likelihood of including an anomaly.

17. The system of claim 12, wherein the hardware pro-
cessor is further programmed to transmit the second model
from the second computing device to the first computing
device.

18. The system of claim 12, wherein the hardware pro-
cessor is further programmed to transmit the first model
from the first computing device to the second computing
device.

19. The system of claim 12, wherein the hardware pro-
cessor is further programmed to:

modify a first portion of the combined model with newly

obtained data; and

remove a second portion of the combined model, wherein

the second part of the combined model was generated
with older data.

20. The system of claim 12, wherein the first computing
device of the application community monitors a first portion
of the program and the second computing device of the
application community monitors a second portion of the
program, wherein the first portion of the program and the
second portion of the program are different portions of the
program.

21. The system of claim 12, wherein the plurality of
computing devices in the application community run the
program or a portion thereof, or run an application that
allows the plurality of computing devices to share informa-
tion that is used to build the combined model for the
program.

22. The system of claim 12, wherein the combined model
is generated in whole or in part from executing the first
sequence of function calls and the second sequence of
function calls, wherein the detection of the anomalous
function call using the combined model indicates behavior
that deviates from normal and may correspond to an attack,
wherein the detection is based on a statistical analysis, and
wherein the combined model incorporates information about
known or suspected attacks against at least a part of the
program.

23. A non-transitory computer-readable medium contain-
ing computer executable instructions that, when executed by
a processor, cause the processor to perform a method of
computing a model of program execution behavior, the
method comprising:

assigning a first sequence of function calls to a first

computing device of an application community and a
second sequence of function calls to a second comput-

US 9,450,979 B2

25

ing device of the application community, wherein the
application community includes a plurality of comput-
ing devices running a program that executes the first
sequence of function calls and the second sequence of
function calls;

receiving a first model of the first sequence of function

calls from the first computing device and a second
model of the second sequence of function calls from the
second computing device;

generating a combined model that combines at least a

portion of the first model and at least a portion of the
second model; and

notifying at least one of the plurality of computing

devices in the application community of an anomalous
function call that was detected using the combined
model.

24. The non-transitory computer-readable medium of
claim 23, wherein at least one of the first model and the
second model is generated using probabilistic modeling that
generates a density estimation of sequences of function
calls.

25. The non-transitory computer-readable medium of
claim 24, wherein the method further comprises:

applying first and second order consistency checks,

wherein the first order consistency check comprises
computing a first probability of an observation of a first
given feature value and the second order consistency
check comprises computing a second probability of the
first given feature value given another feature value;
and

identifying the first given feature value as anomalous if at

least one of the first probability and the second prob-
ability are less than a predetermined threshold prob-
ability.

26. The non-transitory computer-readable medium of
claim 23, wherein at least one of the first model and the
second model is generated using a one-class support vector
machine.

27. The non-transitory computer-readable medium of
claim 23, wherein the method further comprises:

determining whether a function call from at least one of

the first sequence of function calls and the second
sequence of function calls has been executed less than
a threshold number of times; and

25

30

35

40

26

in response to the determination, identifying the function
call as having a greater likelihood of including an
anomaly.

28. The non-transitory computer-readable medium of
claim 23, wherein the method further comprises transmitting
the second model from the second computing device to the
first computing device.

29. The non-transitory computer-readable medium of
claim 23, wherein the method further comprises transmitting
the first model from the first computing device to the second
computing device.

30. The non-transitory computer-readable medium of
claim 23, wherein the method further comprises:

modifying a first portion of the combined model with

newly obtained data; and

removing a second portion of the combined model,

wherein the second part of the combined model was
generated with older data.

31. The non-transitory computer-readable medium of
claim 23, wherein the first computing device of the appli-
cation community monitors a first portion of the program
and the second computing device of the application com-
munity monitors a second portion of the program, wherein
the first portion of the program and the second portion of the
program are different portions of the program.

32. The non-transitory computer-readable medium of
claim 23, wherein the plurality of computing devices in the
application community run the program or a portion thereof,
or run an application that allows the plurality of computing
devices to share information that is used to build the
combined model for the program.

33. The non-transitory computer-readable medium of
claim 23, wherein the combined model is generated in whole
or in part from executing the first sequence of function calls
and the second sequence of function calls, wherein the
detection of the anomalous function call using the combined
model indicates behavior that deviates from normal and may
correspond to an attack, wherein the detection is based on a
statistical analysis, and wherein the combined model incor-
porates information about known or suspected attacks
against at least a part of the program.

#* #* #* #* #*

